gwanju_largeWER_model
This model is a fine-tuned version of openai/whisper-large on the Marcusxx/gwanju dataset. It achieves the following results on the evaluation set:
- Loss: 0.3334
- Wer: 41.8546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4683 | 0.0741 | 250 | 0.4884 | 104.4328 |
0.4578 | 0.1482 | 500 | 0.4522 | 55.8304 |
0.4675 | 0.2223 | 750 | 0.4379 | 65.3948 |
0.4338 | 0.2964 | 1000 | 0.4225 | 65.4206 |
0.4547 | 0.3705 | 1250 | 0.4023 | 63.5814 |
0.3676 | 0.4446 | 1500 | 0.3914 | 47.9551 |
0.3752 | 0.5187 | 1750 | 0.3840 | 48.3838 |
0.3584 | 0.5928 | 2000 | 0.3745 | 44.8641 |
0.4221 | 0.6669 | 2250 | 0.3638 | 42.4548 |
0.3432 | 0.7410 | 2500 | 0.3563 | 42.7206 |
0.3993 | 0.8151 | 2750 | 0.3497 | 44.7955 |
0.3448 | 0.8892 | 3000 | 0.3437 | 43.3722 |
0.3441 | 0.9632 | 3250 | 0.3381 | 40.4270 |
0.2317 | 1.0373 | 3500 | 0.3350 | 39.5782 |
0.2063 | 1.1114 | 3750 | 0.3339 | 40.8385 |
0.2016 | 1.1855 | 4000 | 0.3334 | 41.8546 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 15
Model tree for Marcusxx/gwanju_largeWER_model
Base model
openai/whisper-large