Text Generation
Transformers
Safetensors
PyTorch
mistral
Safetensors
text-generation-inference
Merge
7b
mistralai/Mistral-7B-Instruct-v0.1
uukuguy/speechless-code-mistral-7b-v2.0
code
en
dataset:jondurbin/airoboros-2.2
dataset:Open-Orca/OpenOrca
dataset:garage-bAInd/Open-Platypus
dataset:WizardLM/WizardLM_evol_instruct_V2_196k
dataset:TokenBender/python_eval_instruct_51k
dataset:ise-uiuc/Magicoder-OSS-Instruct-75K
dataset:meta-math/MetaMathQA
Eval Results
Inference Endpoints
conversational
metadata
license: apache-2.0
tags:
- Safetensors
- mistral
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.1
- uukuguy/speechless-code-mistral-7b-v2.0
- transformers
- pytorch
- mistral
- text-generation
- code
- en
- dataset:jondurbin/airoboros-2.2
- dataset:Open-Orca/OpenOrca
- dataset:garage-bAInd/Open-Platypus
- dataset:WizardLM/WizardLM_evol_instruct_V2_196k
- dataset:TokenBender/python_eval_instruct_51k
- dataset:ise-uiuc/Magicoder-OSS-Instruct-75K
- dataset:meta-math/MetaMathQA
- license:apache-2.0
- model-index
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.1
speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.1 is a merge of the following models:
🧩 Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.1
layer_range: [0, 32]
- model: uukuguy/speechless-code-mistral-7b-v2.0
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/speechless-code-mistral-7b-v2.0-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])