Mex Ivanov

MexIvanov

AI & ML interests

NLP, Coding, Quantum Computing and more.

Recent Activity

reacted to singhsidhukuldeep's post with 🔥 14 days ago
Exciting News in AI: JinaAI Releases JINA-CLIP-v2! The team at Jina AI has just released a groundbreaking multilingual multimodal embedding model that's pushing the boundaries of text-image understanding. Here's why this is a big deal: 🚀 Technical Highlights: - Dual encoder architecture combining a 561M parameter Jina XLM-RoBERTa text encoder and a 304M parameter EVA02-L14 vision encoder - Supports 89 languages with 8,192 token context length - Processes images up to 512×512 pixels with 14×14 patch size - Implements FlashAttention2 for text and xFormers for vision processing - Uses Matryoshka Representation Learning for efficient vector storage ⚡️ Under The Hood: - Multi-stage training process with progressive resolution scaling (224→384→512) - Contrastive learning using InfoNCE loss in both directions - Trained on massive multilingual dataset including 400M English and 400M multilingual image-caption pairs - Incorporates specialized datasets for document understanding, scientific graphs, and infographics - Uses hard negative mining with 7 negatives per positive sample 📊 Performance: - Outperforms previous models on visual document retrieval (52.65% nDCG@5) - Achieves 89.73% image-to-text and 79.09% text-to-image retrieval on CLIP benchmark - Strong multilingual performance across 30 languages - Maintains performance even with 75% dimension reduction (256D vs 1024D) 🎯 Key Innovation: The model solves the long-standing challenge of unifying text-only and multi-modal retrieval systems while adding robust multilingual support. Perfect for building cross-lingual visual search systems! Kudos to the research team at Jina AI for this impressive advancement in multimodal AI!
reacted to singhsidhukuldeep's post with 🚀 16 days ago
Exciting breakthrough in AI: @Meta's new Byte Latent Transformer (BLT) revolutionizes language models by eliminating tokenization! The BLT architecture introduces a groundbreaking approach that processes raw bytes instead of tokens, achieving state-of-the-art performance while being more efficient and robust. Here's what makes it special: >> Key Innovations Dynamic Patching: BLT groups bytes into variable-sized patches based on entropy, allocating more compute power where the data is more complex. This results in up to 50% fewer FLOPs during inference compared to traditional token-based models. Three-Component Architecture: • Lightweight Local Encoder that converts bytes to patch representations • Powerful Global Latent Transformer that processes patches • Local Decoder that converts patches back to bytes >> Technical Advantages • Matches performance of Llama 3 at 8B parameters while being more efficient • Superior handling of non-English languages and rare character sequences • Remarkable 99.9% accuracy on spelling tasks • Better scaling properties than token-based models >> Under the Hood The system uses an entropy model to determine patch boundaries, cross-attention mechanisms for information flow, and hash n-gram embeddings for improved representation. The architecture allows simultaneous scaling of both patch and model size while maintaining fixed inference costs. This is a game-changer for multilingual AI and could reshape how we build future language models. Excited to see how this technology evolves!
liked a model 21 days ago
CohereForAI/c4ai-command-r7b-12-2024
View all activity

Organizations

None yet

MexIvanov's activity

reacted to singhsidhukuldeep's post with 🔥 14 days ago
view post
Post
2179
Exciting News in AI: JinaAI Releases JINA-CLIP-v2!

The team at Jina AI has just released a groundbreaking multilingual multimodal embedding model that's pushing the boundaries of text-image understanding. Here's why this is a big deal:

🚀 Technical Highlights:
- Dual encoder architecture combining a 561M parameter Jina XLM-RoBERTa text encoder and a 304M parameter EVA02-L14 vision encoder
- Supports 89 languages with 8,192 token context length
- Processes images up to 512×512 pixels with 14×14 patch size
- Implements FlashAttention2 for text and xFormers for vision processing
- Uses Matryoshka Representation Learning for efficient vector storage

⚡️ Under The Hood:
- Multi-stage training process with progressive resolution scaling (224→384→512)
- Contrastive learning using InfoNCE loss in both directions
- Trained on massive multilingual dataset including 400M English and 400M multilingual image-caption pairs
- Incorporates specialized datasets for document understanding, scientific graphs, and infographics
- Uses hard negative mining with 7 negatives per positive sample

📊 Performance:
- Outperforms previous models on visual document retrieval (52.65% nDCG@5)
- Achieves 89.73% image-to-text and 79.09% text-to-image retrieval on CLIP benchmark
- Strong multilingual performance across 30 languages
- Maintains performance even with 75% dimension reduction (256D vs 1024D)

🎯 Key Innovation:
The model solves the long-standing challenge of unifying text-only and multi-modal retrieval systems while adding robust multilingual support. Perfect for building cross-lingual visual search systems!

Kudos to the research team at Jina AI for this impressive advancement in multimodal AI!
reacted to singhsidhukuldeep's post with 🚀 16 days ago
view post
Post
3623
Exciting breakthrough in AI: @Meta 's new Byte Latent Transformer (BLT) revolutionizes language models by eliminating tokenization!

The BLT architecture introduces a groundbreaking approach that processes raw bytes instead of tokens, achieving state-of-the-art performance while being more efficient and robust. Here's what makes it special:

>> Key Innovations
Dynamic Patching: BLT groups bytes into variable-sized patches based on entropy, allocating more compute power where the data is more complex. This results in up to 50% fewer FLOPs during inference compared to traditional token-based models.

Three-Component Architecture:
• Lightweight Local Encoder that converts bytes to patch representations
• Powerful Global Latent Transformer that processes patches
• Local Decoder that converts patches back to bytes

>> Technical Advantages
• Matches performance of Llama 3 at 8B parameters while being more efficient
• Superior handling of non-English languages and rare character sequences
• Remarkable 99.9% accuracy on spelling tasks
• Better scaling properties than token-based models

>> Under the Hood
The system uses an entropy model to determine patch boundaries, cross-attention mechanisms for information flow, and hash n-gram embeddings for improved representation. The architecture allows simultaneous scaling of both patch and model size while maintaining fixed inference costs.

This is a game-changer for multilingual AI and could reshape how we build future language models. Excited to see how this technology evolves!
  • 2 replies
·
reacted to reach-vb's post with 🔥 30 days ago
view post
Post
3691
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co/jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! 🔥
reacted to burtenshaw's post with 👍 about 1 month ago
view post
Post
2619
For anyone looking to boost their LLM fine-tuning and alignment skills this decemeber. We're running this free and open course called smol course. It’s not big like Li Yin and @mlabonne , it’s just smol.

👷 It focuses on practical use cases, so if you’re working on something, bring it along.

👯‍♀️ It’s peer reviewed and open so you can discuss and get feedback.

🤘 If you’re already a smol pro, feel free to drop a star or issue.

> > Part 1 starts now, and it’s on instruction tuning!

https://github.com/huggingface/smol-course
reacted to julien-c's post with 🔥 about 1 month ago
view post
Post
2417
wow 😮

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

PrimeIntellect/INTELLECT-1-Instruct
reacted to davidberenstein1957's post with 🔥 about 1 month ago
view post
Post
1707
Let’s make a generation of amazing image-generation models

The best image generation models are trained on human preference datasets, where annotators have selected the best image from a choice of two. Unfortunately, many of these datasets are closed source so the community cannot train open models on them. Let’s change that!

The community can contribute image preferences for an open-source dataset that could be used for building AI models that convert text to image, like the flux or stable diffusion families. The dataset will be open source so everyone can use it to train models that we can all use.

Blog: https://huggingface.co/blog/burtenshaw/image-preferences
reacted to maxiw's post with ❤️ about 2 months ago
view post
Post
4633
I was curious to see what people post here on HF so I created a dataset with all HF Posts: maxiw/hf-posts

Some interesting stats:

Top 5 Authors by Total Impressions:
-----------------------------------
@merve : 171,783 impressions (68 posts)
@fdaudens : 135,253 impressions (81 posts)
@singhsidhukuldeep : 122,591 impressions (81 posts)
@akhaliq : 119,526 impressions (78 posts)
@MonsterMMORPG : 112,500 impressions (45 posts)

Top 5 Users by Number of Reactions Given:
----------------------------------------
@osanseviero : 1278 reactions
@clem : 910 reactions
@John6666 : 899 reactions
@victor : 674 reactions
@samusenps : 655 reactions

Top 5 Most Used Reactions:
-------------------------
❤️: 7048 times
🔥: 5921 times
👍: 4856 times
🚀: 2549 times
🤗: 2065 times
·
reacted to TuringsSolutions's post with 👀 2 months ago
view post
Post
2890
I have been seeing a specific type of AI hype more and more, I call it, releasing research expecting that no one will ever reproduce your methods, then overhyping your results. I test the methodology of maybe 4-5 research papers per day. That is how I find a lot of my research. Usually, 3-4 of those experiments end up not being reproduceable for some reason. I am starting to think it is not accidental.

So, I am launching a new series where I specifically showcase a research paper by reproducing their methodology and highlighting the blatant flaws that show up when you actually do this. Here is Episode 1!

https://www.youtube.com/watch?v=JLa0cFWm1A4
  • 5 replies
·
reacted to merve's post with 🤗 2 months ago
view post
Post
5212
Hugging Face Hub Python library now comes with easy inference for vision language models! ✨

$ pip install huggingface_hub 🤗
  • 1 reply
·