File size: 33,394 Bytes
d2bcf61 f0326cd 03b972a f0326cd a637885 d2bcf61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to sign legal documents as power of attorney?
sentences:
- 'After the principal''s name, write “by” and then sign your own name. Under or
after the signature line, indicate your status as POA by including any of the
following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
- '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap
Menu (...).'', ''Tap Export to SD card.'']'
- Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking
gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect
nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect
product for both cannabis and chocolate lovers, who appreciate a little twist.
- source_sentence: how to delete vdom in fortigate?
sentences:
- Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
removed from the configuration.
- 'Both combination birth control pills and progestin-only pills may cause headaches
as a side effect. Additional side effects of birth control pills may include:
breast tenderness. nausea.'
- White cheese tends to show imperfections more readily and as consumers got more
used to yellow-orange cheese, it became an expected option. Today, many cheddars
are yellow. While most cheesemakers use annatto, some use an artificial coloring
agent instead, according to Sachs.
- source_sentence: where are earthquakes most likely to occur on earth?
sentences:
- Zelle in the Bank of the America app is a fast, safe, and easy way to send and
receive money with family and friends who have a bank account in the U.S., all
with no fees. Money moves in minutes directly between accounts that are already
enrolled with Zelle.
- It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft
travels at least 240,000 miles (386,400 kilometers) which is the distance between
Earth and the Moon.
- Most earthquakes occur along the edge of the oceanic and continental plates. The
earth's crust (the outer layer of the planet) is made up of several pieces, called
plates. The plates under the oceans are called oceanic plates and the rest are
continental plates.
- source_sentence: fix iphone is disabled connect to itunes without itunes?
sentences:
- To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
Click on the "Erase iPhone" option and confirm your selection. Wait for a while
as the "Find My iPhone" feature will remotely erase your iOS device. Needless
to say, it will also disable its lock.
- How Māui brought fire to the world. One evening, after eating a hearty meal, Māui
lay beside his fire staring into the flames. ... In the middle of the night, while
everyone was sleeping, Māui went from village to village and extinguished all
the fires until not a single fire burned in the world.
- Angry Orchard makes a variety of year-round craft cider styles, including Angry
Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of
culinary apples with dryness and bright acidity of bittersweet apples for a complex,
refreshing taste.
- source_sentence: how to reverse a video on tiktok that's not yours?
sentences:
- '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like
a clock. Open the Effects menu. ... '', ''At the end of the new list that appears,
tap "Time." Select "Time" at the end. ... '', ''Select "Reverse" — you\''ll then
see a preview of your new, reversed video appear on the screen.'']'
- Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial
investment range of $157,800 to $438,000. The initial cost of a franchise includes
several fees -- Unlock this franchise to better understand the costs such as training
and territory fees.
- Relative age is the age of a rock layer (or the fossils it contains) compared
to other layers. It can be determined by looking at the position of rock layers.
Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can
be determined by using radiometric dating.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(256000, 1024, mode='mean')
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-gooaq-en")
# Run inference
sentences = [
"how to reverse a video on tiktok that's not yours?",
'[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
| <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
| <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1 | 48.9183 | - |
| 0.0682 | 100 | 24.7453 | 3.5934 |
| 0.1363 | 200 | 8.3975 | 2.4385 |
| 0.2045 | 300 | 6.3171 | 1.9962 |
| 0.2727 | 400 | 5.3817 | 1.7536 |
| 0.3408 | 500 | 4.8295 | 1.6392 |
| 0.4090 | 600 | 4.4745 | 1.5070 |
| 0.4772 | 700 | 4.1783 | 1.4406 |
| 0.5453 | 800 | 3.952 | 1.3655 |
| 0.6135 | 900 | 3.7352 | 1.3114 |
| 0.6817 | 1000 | 3.6185 | 1.2551 |
| 0.7498 | 1100 | 3.4514 | 1.2143 |
| 0.8180 | 1200 | 3.3535 | 1.1816 |
| 0.8862 | 1300 | 3.2741 | 1.1527 |
| 0.9543 | 1400 | 3.1862 | 1.1411 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## NanoBEIREvaluator > 0.8
```
{
"NanoDBPedia_cosine_accuracy@3": 0.86,
"NanoDBPedia_cosine_accuracy@5": 0.92,
"NanoDBPedia_cosine_accuracy@10": 0.96,
"NanoFEVER_cosine_accuracy@3": 0.86,
"NanoFEVER_cosine_accuracy@5": 0.92,
"NanoFEVER_cosine_accuracy@10": 0.96,
"NanoHotpotQA_cosine_accuracy@3": 0.82,
"NanoHotpotQA_cosine_accuracy@5": 0.84,
"NanoHotpotQA_cosine_accuracy@10": 0.88,
"NanoQuoraRetrieval_cosine_accuracy@1": 0.88,
"NanoQuoraRetrieval_cosine_accuracy@3": 0.96,
"NanoQuoraRetrieval_cosine_accuracy@5": 1.0,
"NanoQuoraRetrieval_cosine_accuracy@10": 1.0,
"NanoSCIDOCS_cosine_accuracy@5": 0.82,
"NanoSCIDOCS_cosine_accuracy@10": 0.92,
"NanoArguAna_cosine_accuracy@10": 0.92,
"NanoSciFact_cosine_accuracy@10": 0.88,
"NanoTouche2020_cosine_accuracy@3": 0.8367346938775511,
"NanoTouche2020_cosine_accuracy@5": 0.9183673469387755,
"NanoTouche2020_cosine_accuracy@10": 0.9387755102040817,
"NanoBEIR_mean_cosine_accuracy@10": 0.8583673469387756
}
````
## All NanoBEIREvaluator
```bibtext
{'NanoClimateFEVER_cosine_accuracy@1': 0.28,
'NanoClimateFEVER_cosine_accuracy@3': 0.44,
'NanoClimateFEVER_cosine_accuracy@5': 0.54,
'NanoClimateFEVER_cosine_accuracy@10': 0.72,
'NanoClimateFEVER_cosine_precision@1': 0.28,
'NanoClimateFEVER_cosine_precision@3': 0.15333333333333332,
'NanoClimateFEVER_cosine_precision@5': 0.124,
'NanoClimateFEVER_cosine_precision@10': 0.08999999999999998,
'NanoClimateFEVER_cosine_recall@1': 0.145,
'NanoClimateFEVER_cosine_recall@3': 0.205,
'NanoClimateFEVER_cosine_recall@5': 0.264,
'NanoClimateFEVER_cosine_recall@10': 0.36200000000000004,
'NanoClimateFEVER_cosine_ndcg@10': 0.2957527689242254,
'NanoClimateFEVER_cosine_mrr@10': 0.3996666666666668,
'NanoClimateFEVER_cosine_map@100': 0.23258384801937396,
'NanoDBPedia_cosine_accuracy@1': 0.68,
'NanoDBPedia_cosine_accuracy@3': 0.86,
'NanoDBPedia_cosine_accuracy@5': 0.92,
'NanoDBPedia_cosine_accuracy@10': 0.96,
'NanoDBPedia_cosine_precision@1': 0.68,
'NanoDBPedia_cosine_precision@3': 0.56,
'NanoDBPedia_cosine_precision@5': 0.5120000000000001,
'NanoDBPedia_cosine_precision@10': 0.43800000000000006,
'NanoDBPedia_cosine_recall@1': 0.07601531530835434,
'NanoDBPedia_cosine_recall@3': 0.1438904710839341,
'NanoDBPedia_cosine_recall@5': 0.20681359525684506,
'NanoDBPedia_cosine_recall@10': 0.319966975132044,
'NanoDBPedia_cosine_ndcg@10': 0.5501100350453579,
'NanoDBPedia_cosine_mrr@10': 0.7855000000000001,
'NanoDBPedia_cosine_map@100': 0.39476156890024533,
'NanoFEVER_cosine_accuracy@1': 0.68,
'NanoFEVER_cosine_accuracy@3': 0.86,
'NanoFEVER_cosine_accuracy@5': 0.92,
'NanoFEVER_cosine_accuracy@10': 0.96,
'NanoFEVER_cosine_precision@1': 0.68,
'NanoFEVER_cosine_precision@3': 0.29333333333333333,
'NanoFEVER_cosine_precision@5': 0.19199999999999995,
'NanoFEVER_cosine_precision@10': 0.10199999999999998,
'NanoFEVER_cosine_recall@1': 0.6266666666666666,
'NanoFEVER_cosine_recall@3': 0.8133333333333332,
'NanoFEVER_cosine_recall@5': 0.8833333333333333,
'NanoFEVER_cosine_recall@10': 0.9233333333333333,
'NanoFEVER_cosine_ndcg@10': 0.7933479848498471,
'NanoFEVER_cosine_mrr@10': 0.7780793650793651,
'NanoFEVER_cosine_map@100': 0.7406571665049926,
'NanoFiQA2018_cosine_accuracy@1': 0.46,
'NanoFiQA2018_cosine_accuracy@3': 0.64,
'NanoFiQA2018_cosine_accuracy@5': 0.7,
'NanoFiQA2018_cosine_accuracy@10': 0.72,
'NanoFiQA2018_cosine_precision@1': 0.46,
'NanoFiQA2018_cosine_precision@3': 0.2866666666666666,
'NanoFiQA2018_cosine_precision@5': 0.22399999999999998,
'NanoFiQA2018_cosine_precision@10': 0.12999999999999998,
'NanoFiQA2018_cosine_recall@1': 0.23924603174603173,
'NanoFiQA2018_cosine_recall@3': 0.4251031746031746,
'NanoFiQA2018_cosine_recall@5': 0.5099603174603174,
'NanoFiQA2018_cosine_recall@10': 0.566015873015873,
'NanoFiQA2018_cosine_ndcg@10': 0.4774545077577204,
'NanoFiQA2018_cosine_mrr@10': 0.5475555555555556,
'NanoFiQA2018_cosine_map@100': 0.4125452702654584,
'NanoHotpotQA_cosine_accuracy@1': 0.64,
'NanoHotpotQA_cosine_accuracy@3': 0.82,
'NanoHotpotQA_cosine_accuracy@5': 0.84,
'NanoHotpotQA_cosine_accuracy@10': 0.88,
'NanoHotpotQA_cosine_precision@1': 0.64,
'NanoHotpotQA_cosine_precision@3': 0.3533333333333333,
'NanoHotpotQA_cosine_precision@5': 0.23599999999999993,
'NanoHotpotQA_cosine_precision@10': 0.128,
'NanoHotpotQA_cosine_recall@1': 0.32,
'NanoHotpotQA_cosine_recall@3': 0.53,
'NanoHotpotQA_cosine_recall@5': 0.59,
'NanoHotpotQA_cosine_recall@10': 0.64,
'NanoHotpotQA_cosine_ndcg@10': 0.5959681682828366,
'NanoHotpotQA_cosine_mrr@10': 0.723888888888889,
'NanoHotpotQA_cosine_map@100': 0.5262469568756968,
'NanoMSMARCO_cosine_accuracy@1': 0.36,
'NanoMSMARCO_cosine_accuracy@3': 0.52,
'NanoMSMARCO_cosine_accuracy@5': 0.58,
'NanoMSMARCO_cosine_accuracy@10': 0.8,
'NanoMSMARCO_cosine_precision@1': 0.36,
'NanoMSMARCO_cosine_precision@3': 0.1733333333333333,
'NanoMSMARCO_cosine_precision@5': 0.11599999999999999,
'NanoMSMARCO_cosine_precision@10': 0.08,
'NanoMSMARCO_cosine_recall@1': 0.36,
'NanoMSMARCO_cosine_recall@3': 0.52,
'NanoMSMARCO_cosine_recall@5': 0.58,
'NanoMSMARCO_cosine_recall@10': 0.8,
'NanoMSMARCO_cosine_ndcg@10': 0.5539831330912274,
'NanoMSMARCO_cosine_mrr@10': 0.47960317460317464,
'NanoMSMARCO_cosine_map@100': 0.4907628900864195,
'NanoNFCorpus_cosine_accuracy@1': 0.42,
'NanoNFCorpus_cosine_accuracy@3': 0.56,
'NanoNFCorpus_cosine_accuracy@5': 0.6,
'NanoNFCorpus_cosine_accuracy@10': 0.7,
'NanoNFCorpus_cosine_precision@1': 0.42,
'NanoNFCorpus_cosine_precision@3': 0.3466666666666666,
'NanoNFCorpus_cosine_precision@5': 0.32800000000000007,
'NanoNFCorpus_cosine_precision@10': 0.286,
'NanoNFCorpus_cosine_recall@1': 0.03391318439564492,
'NanoNFCorpus_cosine_recall@3': 0.06311668492872162,
'NanoNFCorpus_cosine_recall@5': 0.08191277059586696,
'NanoNFCorpus_cosine_recall@10': 0.13476845853527392,
'NanoNFCorpus_cosine_ndcg@10': 0.3322933792371396,
'NanoNFCorpus_cosine_mrr@10': 0.4983333333333333,
'NanoNFCorpus_cosine_map@100': 0.13985354018581944,
'NanoNQ_cosine_accuracy@1': 0.44,
'NanoNQ_cosine_accuracy@3': 0.64,
'NanoNQ_cosine_accuracy@5': 0.66,
'NanoNQ_cosine_accuracy@10': 0.76,
'NanoNQ_cosine_precision@1': 0.44,
'NanoNQ_cosine_precision@3': 0.22,
'NanoNQ_cosine_precision@5': 0.14,
'NanoNQ_cosine_precision@10': 0.08199999999999999,
'NanoNQ_cosine_recall@1': 0.42,
'NanoNQ_cosine_recall@3': 0.62,
'NanoNQ_cosine_recall@5': 0.64,
'NanoNQ_cosine_recall@10': 0.75,
'NanoNQ_cosine_ndcg@10': 0.5903874296113161,
'NanoNQ_cosine_mrr@10': 0.5456349206349206,
'NanoNQ_cosine_map@100': 0.5437440035864959,
'NanoQuoraRetrieval_cosine_accuracy@1': 0.88,
'NanoQuoraRetrieval_cosine_accuracy@3': 0.96,
'NanoQuoraRetrieval_cosine_accuracy@5': 1.0,
'NanoQuoraRetrieval_cosine_accuracy@10': 1.0,
'NanoQuoraRetrieval_cosine_precision@1': 0.88,
'NanoQuoraRetrieval_cosine_precision@3': 0.3933333333333333,
'NanoQuoraRetrieval_cosine_precision@5': 0.256,
'NanoQuoraRetrieval_cosine_precision@10': 0.13599999999999998,
'NanoQuoraRetrieval_cosine_recall@1': 0.784,
'NanoQuoraRetrieval_cosine_recall@3': 0.9186666666666667,
'NanoQuoraRetrieval_cosine_recall@5': 0.976,
'NanoQuoraRetrieval_cosine_recall@10': 0.9933333333333334,
'NanoQuoraRetrieval_cosine_ndcg@10': 0.9367841595958026,
'NanoQuoraRetrieval_cosine_mrr@10': 0.9246666666666666,
'NanoQuoraRetrieval_cosine_map@100': 0.913554834054834,
'NanoSCIDOCS_cosine_accuracy@1': 0.52,
'NanoSCIDOCS_cosine_accuracy@3': 0.68,
'NanoSCIDOCS_cosine_accuracy@5': 0.82,
'NanoSCIDOCS_cosine_accuracy@10': 0.92,
'NanoSCIDOCS_cosine_precision@1': 0.52,
'NanoSCIDOCS_cosine_precision@3': 0.3933333333333333,
'NanoSCIDOCS_cosine_precision@5': 0.33599999999999997,
'NanoSCIDOCS_cosine_precision@10': 0.21600000000000003,
'NanoSCIDOCS_cosine_recall@1': 0.10966666666666666,
'NanoSCIDOCS_cosine_recall@3': 0.24466666666666664,
'NanoSCIDOCS_cosine_recall@5': 0.34566666666666657,
'NanoSCIDOCS_cosine_recall@10': 0.44266666666666665,
'NanoSCIDOCS_cosine_ndcg@10': 0.4328110226758414,
'NanoSCIDOCS_cosine_mrr@10': 0.6317222222222222,
'NanoSCIDOCS_cosine_map@100': 0.34997841607847063,
'NanoArguAna_cosine_accuracy@1': 0.2,
'NanoArguAna_cosine_accuracy@3': 0.56,
'NanoArguAna_cosine_accuracy@5': 0.76,
'NanoArguAna_cosine_accuracy@10': 0.92,
'NanoArguAna_cosine_precision@1': 0.2,
'NanoArguAna_cosine_precision@3': 0.18666666666666668,
'NanoArguAna_cosine_precision@5': 0.15200000000000002,
'NanoArguAna_cosine_precision@10': 0.092,
'NanoArguAna_cosine_recall@1': 0.2,
'NanoArguAna_cosine_recall@3': 0.56,
'NanoArguAna_cosine_recall@5': 0.76,
'NanoArguAna_cosine_recall@10': 0.92,
'NanoArguAna_cosine_ndcg@10': 0.5499071039525992,
'NanoArguAna_cosine_mrr@10': 0.43229365079365073,
'NanoArguAna_cosine_map@100': 0.43523820792684886,
'NanoSciFact_cosine_accuracy@1': 0.6,
'NanoSciFact_cosine_accuracy@3': 0.72,
'NanoSciFact_cosine_accuracy@5': 0.8,
'NanoSciFact_cosine_accuracy@10': 0.88,
'NanoSciFact_cosine_precision@1': 0.6,
'NanoSciFact_cosine_precision@3': 0.25333333333333335,
'NanoSciFact_cosine_precision@5': 0.18,
'NanoSciFact_cosine_precision@10': 0.09799999999999999,
'NanoSciFact_cosine_recall@1': 0.58,
'NanoSciFact_cosine_recall@3': 0.7,
'NanoSciFact_cosine_recall@5': 0.8,
'NanoSciFact_cosine_recall@10': 0.87,
'NanoSciFact_cosine_ndcg@10': 0.7265348054031264,
'NanoSciFact_cosine_mrr@10': 0.6841031746031746,
'NanoSciFact_cosine_map@100': 0.6810233866101422,
'NanoTouche2020_cosine_accuracy@1': 0.5102040816326531,
'NanoTouche2020_cosine_accuracy@3': 0.8367346938775511,
'NanoTouche2020_cosine_accuracy@5': 0.9183673469387755,
'NanoTouche2020_cosine_accuracy@10': 0.9387755102040817,
'NanoTouche2020_cosine_precision@1': 0.5102040816326531,
'NanoTouche2020_cosine_precision@3': 0.5374149659863945,
'NanoTouche2020_cosine_precision@5': 0.5061224489795918,
'NanoTouche2020_cosine_precision@10': 0.43265306122448977,
'NanoTouche2020_cosine_recall@1': 0.03546508562664911,
'NanoTouche2020_cosine_recall@3': 0.11189238805791148,
'NanoTouche2020_cosine_recall@5': 0.1673503566176574,
'NanoTouche2020_cosine_recall@10': 0.2818808841266296,
'NanoTouche2020_cosine_ndcg@10': 0.47479704449085264,
'NanoTouche2020_cosine_mrr@10': 0.6714285714285714,
'NanoTouche2020_cosine_map@100': 0.3438320372291555,
'NanoBEIR_mean_cosine_accuracy@1': 0.5130926216640502,
'NanoBEIR_mean_cosine_accuracy@3': 0.6997488226059654,
'NanoBEIR_mean_cosine_accuracy@5': 0.7737205651491367,
'NanoBEIR_mean_cosine_accuracy@10': 0.8583673469387756,
'NanoBEIR_mean_cosine_precision@1': 0.5130926216640502,
'NanoBEIR_mean_cosine_precision@3': 0.31928833071690216,
'NanoBEIR_mean_cosine_precision@5': 0.2540094191522763,
'NanoBEIR_mean_cosine_precision@10': 0.1777425431711146,
'NanoBEIR_mean_cosine_recall@1': 0.302305611570001,
'NanoBEIR_mean_cosine_recall@3': 0.4504361065646467,
'NanoBEIR_mean_cosine_recall@5': 0.5234643876869758,
'NanoBEIR_mean_cosine_recall@10': 0.6156896557033196,
'NanoBEIR_mean_cosine_ndcg@10': 0.5623178109936842,
'NanoBEIR_mean_cosine_mrr@10': 0.6232673992673993,
'NanoBEIR_mean_cosine_map@100': 0.47729093279415025}
```
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |