metadata
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
pipeline_tag: video-text-to-text
model-index:
- name: VideoChat-Flash-Qwen2_5-1_5B_res448
results:
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 65.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 70
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Perception Test
type: percepTest
metrics:
- type: accuracy
value: 70.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LongVideoBench
type: longvideobench
metrics:
- type: accuracy
value: 58.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME (wo sub)
type: videomme
metrics:
- type: accuracy
value: 57
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LVBench
type: lvbench
metrics:
- type: accuracy
value: 42.9
name: accuracy
verified: true
🦜VideoChat-Flash-Qwen2_5-2B_res448⚡
[📰 Blog] [📂 GitHub] [📜 Tech Report] [🗨️ Chat Demo]
VideoChat-Flash-2B is constructed upon UMT-L (300M) and Qwen2.5-1.5B, employing only 16 tokens per frame. By leveraging Yarn to extend the context window to 128k (Qwen2's native context window is 32k), our model supports input sequences of up to approximately 10,000 frames.
Note: Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension, to ensure optimal performance, using English for interaction is recommended.
📈 Performance
Model | MVBench | LongVideoBench | VideoMME(w/o sub) |
---|---|---|---|
VideoChat-Flash-Qwen2_5-2B@448 | 70.0 | 58.3 | 57.0 |
VideoChat-Flash-Qwen2-7B@224 | 73.2 | 64.2 | 64.0 |
VideoChat-Flash-Qwen2-7B@448 | 74.0 | 64.7 | 65.3 |
🚀 How to use the model
First, you need to install flash attention2 and some other modules. We provide a simple installation example below:
pip install transformers==4.40.1
pip install timm
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation
Then you could use our model:
from transformers import AutoModel, AutoTokenizer
# model setting
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2_5-2B_res448'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor
mm_llm_compress = False # use the global compress or not
if mm_llm_compress:
model.config.mm_llm_compress = True
model.config.llm_compress_type = "uniform0_attention"
model.config.llm_compress_layer_list = [4, 18]
model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
else:
model.config.mm_llm_compress = True
# evaluation setting
max_num_frames = 512
generation_config = dict(
do_sample=False,
temperature=0.0,
max_new_tokens=1024,
top_p=0.1,
num_beams=1
)
video_path = "your_video.mp4"
# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output1)
# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output2)
✏️ Citation
@article{li2024videochatflash,
title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
journal={arXiv preprint arXiv:2501.00574},
year={2024}
}