QuantFactory/internlm2-chat-7b-sft-GGUF
This is quantized version of internlm/internlm2-chat-7b-sft created using llama.cpp
Model Description
Introduction
InternLM2 has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics:
200K Context window: Nearly perfect at finding needles in the haystack with 200K-long context, with leading performance on long-context tasks like LongBench and L-Eval. Try it with LMDeploy for 200K-context inference.
Outstanding comprehensive performance: Significantly better than the last generation in all dimensions, especially in reasoning, math, code, chat experience, instruction following, and creative writing, with leading performance among open-source models in similar sizes. In some evaluations, InternLM2-Chat-20B may match or even surpass ChatGPT (GPT-3.5).
Code interpreter & Data analysis: With code interpreter, InternLM2-Chat-20B obtains compatible performance with GPT-4 on GSM8K and MATH. InternLM2-Chat also provides data analysis capability.
Stronger tool use: Based on better tool utilization-related capabilities in instruction following, tool selection and reflection, InternLM2 can support more kinds of agents and multi-step tool calling for complex tasks. See examples.
InternLM2-Chat-7B-SFT
InternLM2-Chat-7B-SFT is the SFT version based on InternLM2-Base, and InternLM2-Chat-7B is further trained from InternLM2-Chat-7B-SFT by Online RLHF. We release the SFT version so that the community can study the influence of RLHF deeply.
Performance Evaluation
We conducted a comprehensive evaluation of InternLM2 using the open-source evaluation tool OpenCompass. The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the OpenCompass leaderboard for more evaluation results.
Dataset\Models | InternLM2-7B | InternLM2-Chat-7B | InternLM2-20B | InternLM2-Chat-20B | ChatGPT | GPT-4 |
---|---|---|---|---|---|---|
MMLU | 65.8 | 63.7 | 67.7 | 66.5 | 69.1 | 83.0 |
AGIEval | 49.9 | 47.2 | 53.0 | 50.3 | 39.9 | 55.1 |
BBH | 65.0 | 61.2 | 72.1 | 68.3 | 70.1 | 86.7 |
GSM8K | 70.8 | 70.7 | 76.1 | 79.6 | 78.2 | 91.4 |
MATH | 20.2 | 23.0 | 25.5 | 31.9 | 28.0 | 45.8 |
HumanEval | 43.3 | 59.8 | 48.8 | 67.1 | 73.2 | 74.4 |
MBPP(Sanitized) | 51.8 | 51.4 | 63.0 | 65.8 | 78.9 | 79.0 |
- The evaluation results were obtained from OpenCompass (some data marked with *, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by OpenCompass.
- The evaluation data may have numerical differences due to the version iteration of OpenCompass, so please refer to the latest evaluation results of OpenCompass.
Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
Import from Transformers
To load the InternLM 7B Chat model using Transformers, use the following code:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-7b-sft", trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
model = AutoModelForCausalLM.from_pretrained("internlm/internlm2-chat-7b-sft", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
response, history = model.chat(tokenizer, "hello", history=[])
print(response)
# Hello! How can I help you today?
response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history)
print(response)
The responses can be streamed using stream_chat
:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "internlm/internlm2-chat-7b-sft"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
Deployment
LMDeploy
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
pip install lmdeploy
You can run batch inference locally with the following python code:
import lmdeploy
pipe = lmdeploy.pipeline("internlm/internlm2-chat-7b-sft")
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)
Or you can launch an OpenAI compatible server with the following command:
lmdeploy serve api_server internlm/internlm2-chat-7b-sft --model-name internlm2-chat-7b-sft --server-port 23333
Then you can send a chat request to the server:
curl http://localhost:23333/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "internlm2-chat-7b-sft",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Introduce deep learning to me."}
]
}'
Find more details in the LMDeploy documentation
vLLM
Launch OpenAI compatible server with vLLM>=0.3.2
:
pip install vllm
python -m vllm.entrypoints.openai.api_server --model internlm/internlm2-chat-7b-sft --served-model-name internlm2-chat-7b-sft --trust-remote-code
Then you can send a chat request to the server:
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "internlm2-chat-7b-sft",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Introduce deep learning to me."}
]
}'
Find more details in the vLLM documentation
Open Source License
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(ä¸æ–‡ï¼‰. For other questions or collaborations, please contact [email protected].
- Downloads last month
- 41
Model tree for QuantFactory/internlm2-chat-7b-sft-GGUF
Base model
internlm/internlm2-chat-7b-sft