GPT-2 Medium SFT and DPO on Anthropic-hh Dataset
This repository GPT-2 Medium model instruct tuned first on the Anthropic-hh dataset and then further aligned on the same dataset with DPO.
Model Information
- Model Name: RaushanTurganbay/GPT2_sft_and_dpo_tuned
- Base Model: GPT-2 Medium
- Training Data: Anthropic-hh dataset
- Fine-Tuning Approach: Direct Preference Optiization (DPO)
How to Use
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, StoppingCriteria, StoppingCriteriaList
tokenizer_dpo = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned")
model_dpo = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned")
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
def stopping_criteria(tokenizer, stop_words):
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
return stopping_criteria
# Generate responses
stopping = stopping_criteria(tokenizer, ["\n\nHuman:"])
prompt = "\n\nHuman: {your_instruction}\n\nAssistant:"
inputs_dpo = tokenizer_dpo(prompt, return_tensors="pt")
outputs_dpo = model_dpo.generate(**inputs_dpo, stopping_criteria=stopping, max_length=150)
print("Model Response:", tokenizer_dpo.batch_decode(outputs_dpo))
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.