YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
gpt2-squad-nqg-hl - GGUF
- Model creator: https://huggingface.co/p208p2002/
- Original model: https://huggingface.co/p208p2002/gpt2-squad-nqg-hl/
Name | Quant method | Size |
---|---|---|
gpt2-squad-nqg-hl.Q2_K.gguf | Q2_K | 0.08GB |
gpt2-squad-nqg-hl.Q3_K_S.gguf | Q3_K_S | 0.08GB |
gpt2-squad-nqg-hl.Q3_K.gguf | Q3_K | 0.09GB |
gpt2-squad-nqg-hl.Q3_K_M.gguf | Q3_K_M | 0.09GB |
gpt2-squad-nqg-hl.Q3_K_L.gguf | Q3_K_L | 0.1GB |
gpt2-squad-nqg-hl.IQ4_XS.gguf | IQ4_XS | 0.1GB |
gpt2-squad-nqg-hl.Q4_0.gguf | Q4_0 | 0.1GB |
gpt2-squad-nqg-hl.IQ4_NL.gguf | IQ4_NL | 0.1GB |
gpt2-squad-nqg-hl.Q4_K_S.gguf | Q4_K_S | 0.1GB |
gpt2-squad-nqg-hl.Q4_K.gguf | Q4_K | 0.11GB |
gpt2-squad-nqg-hl.Q4_K_M.gguf | Q4_K_M | 0.11GB |
gpt2-squad-nqg-hl.Q4_1.gguf | Q4_1 | 0.11GB |
gpt2-squad-nqg-hl.Q5_0.gguf | Q5_0 | 0.11GB |
gpt2-squad-nqg-hl.Q5_K_S.gguf | Q5_K_S | 0.11GB |
gpt2-squad-nqg-hl.Q5_K.gguf | Q5_K | 0.12GB |
gpt2-squad-nqg-hl.Q5_K_M.gguf | Q5_K_M | 0.12GB |
gpt2-squad-nqg-hl.Q5_1.gguf | Q5_1 | 0.12GB |
gpt2-squad-nqg-hl.Q6_K.gguf | Q6_K | 0.13GB |
gpt2-squad-nqg-hl.Q8_0.gguf | Q8_0 | 0.17GB |
Original model description:
datasets: - squad tags: - question-generation widget: - text: "Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]."
Transformer QG on SQuAD
HLQG is Proposed by Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.
This is a Reproduce Version
More detail: p208p2002/Transformer-QG-on-SQuAD
Usage
Input Format
C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|]
Input Example
Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL].
Who wrote Harry Potter?
Data setting
We report two dataset setting as Follow
SQuAD
- train: 87599\\t
- validation: 10570
SQuAD NQG
- train: 75722
- dev: 10570
- test: 11877
Learning to Ask: Neural Question Generation for Reading Comprehension
Available models
- BART
- GPT2
- T5
Expriments
We report score with NQG Scorer
which is using in SQuAD NQG.
If not special explanation, the size of the model defaults to "base".
SQuAD
Model | Bleu 1 | Bleu 2 | Bleu 3 | Bleu 4 | METEOR | ROUGE-L |
---|---|---|---|---|---|---|
BART-HLSQG | 54.67 | 39.26 | 30.34 | 24.15 | 25.43 | 52.64 |
GPT2-HLSQG | 49.31 | 33.95 | 25.41 | 19.69 | 22.29 | 48.82 |
T5-HLSQG | 54.29 | 39.22 | 30.43 | 24.26 | 25.56 | 53.11 |
SQuAD NQG
Model | Bleu 1 | Bleu 2 | Bleu 3 | Bleu 4 | METEOR | ROUGE-L |
---|---|---|---|---|---|---|
BERT-HLSQG (Chan et al.) | 49.73 | 34.60 | 26.13 | 20.33 | 23.88 | 48.23 |
BART-HLSQG | 54.12 | 38.19 | 28.84 | 22.35 | 24.55 | 51.03 |
GPT2-HLSQG | 49.82 | 33.69 | 24.71 | 18.63 | 21.90 | 47.60 |
T5-HLSQG | 53.13 | 37.60 | 28.62 | 22.38 | 24.48 | 51.20 |
- Downloads last month
- 26