distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0205
- Accuracy: {'accuracy': 0.886}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3867 | {'accuracy': 0.874} |
0.4338 | 2.0 | 500 | 0.3422 | {'accuracy': 0.886} |
0.4338 | 3.0 | 750 | 0.5465 | {'accuracy': 0.876} |
0.2056 | 4.0 | 1000 | 0.5987 | {'accuracy': 0.887} |
0.2056 | 5.0 | 1250 | 0.8393 | {'accuracy': 0.888} |
0.0888 | 6.0 | 1500 | 0.7664 | {'accuracy': 0.888} |
0.0888 | 7.0 | 1750 | 0.8778 | {'accuracy': 0.881} |
0.0233 | 8.0 | 2000 | 0.9618 | {'accuracy': 0.889} |
0.0233 | 9.0 | 2250 | 1.0294 | {'accuracy': 0.888} |
0.0114 | 10.0 | 2500 | 1.0205 | {'accuracy': 0.886} |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for Ronan73/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased