Gemma 2 Scripter

Gemma 2 Scripter is a fine-tuned version of the Gemma 2 2B instruct model designed for generating high-quality YouTube scripts based on provided keywords. It is optimized for text generation tasks, delivering coherent and contextually relevant outputs.

Model Details

  • Model Name: Sidharthan/gemma2_scripter
  • Architecture: Causal Language Model
  • Base Model: Gemma 2 2B
  • Fine-tuning Objective: Script generation using prompt-based keywords.

How to Use

Installation

Ensure you have the following dependencies installed:

pip install torch transformers peft

Code Sample

from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM
import torch

# Load the model and tokenizer
model_name = "Sidharthan/gemma2_scripter"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model = AutoPeftModelForCausalLM.from_pretrained(
    model_name,
    device_map=None,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    trust_remote_code=True,
    low_cpu_mem_usage=True
).to(device)

# Generate a script
def generate_script(prompt):
    formatted_prompt = f"<bos><start_of_turn>keywords\n{prompt}<end_of_turn>\n<start_of_turn>script\n"
    inputs = tokenizer(formatted_prompt, return_tensors="pt")
    inputs = {key: value.to(device) for key, value in inputs.items()}
    
    outputs = model.generate(
        **inputs,
        max_length=1024,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        top_k=50,
        repetition_penalty=1.2,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id
    )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

# Example usage
prompt = "crosshatch waffle texture, dark chocolate, four bar crispy wafers, kat, milk chocolate"
response = generate_script(prompt)
print(f"Generated Script:\n{response}")

Input Format

The model expects prompts in the following format:

<bos><start_of_turn>keywords
<your_keywords_here><end_of_turn>
<start_of_turn>script

Example:

<bos><start_of_turn>keywords
crosshatch waffle texture, dark chocolate, four bar crispy wafers, kat, milk chocolate<end_of_turn>
<start_of_turn>script

Output

The output is a YouTube script generated based on the keywords provided.

Performance

  • CPU: Slower inference due to computational constraints.
  • GPU: Optimized for faster inference with FP16 support.

Applications

  • Generating structured scripts for video content
  • Keyword-based text generation for creative tasks

Training Details

Training Data

The model was fine-tuned on a custom dataset of YouTube scripts paired with their corresponding keywords.

Training Procedure

  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Optimization: AdamW optimizer
  • Learning Rate: 2e-4
  • Batch Size: 4
  • Training Steps: 1000

Limitations

  • The model's output quality depends on the clarity and relevance of input keywords
  • May occasionally generate repetitive content
  • Performance may vary based on hardware capabilities

Citation

If you use this model in your research, please cite:

@misc{gemma2_scripter,
  author = {Sidharthan},
  title = {Gemma 2 Scripter: Fine-tuned YouTube Script Generator},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face Model Hub},
  howpublished = {\url{https://huggingface.co/Sidharthan/gemma2_scripter}}
}

License

This model is released under the MIT License.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Spaces using Sidharthan/gemma2_scripter 2