speaker-segmentation-fine-tuned-callhome-eng
This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set:
- Loss: 0.4759
- Der: 0.1904
- False Alarm: 0.0618
- Missed Detection: 0.0722
- Confusion: 0.0565
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.4503 | 1.0 | 181 | 0.4741 | 0.1951 | 0.0605 | 0.0754 | 0.0592 |
0.4189 | 2.0 | 362 | 0.4848 | 0.1943 | 0.0654 | 0.0741 | 0.0548 |
0.4007 | 3.0 | 543 | 0.4817 | 0.1939 | 0.0651 | 0.0713 | 0.0575 |
0.3938 | 4.0 | 724 | 0.4778 | 0.1909 | 0.0623 | 0.0722 | 0.0564 |
0.3949 | 5.0 | 905 | 0.4759 | 0.1904 | 0.0618 | 0.0722 | 0.0565 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.3.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for Suraj0599/speaker-segmentation-fine-tuned-callhome-eng
Base model
pyannote/segmentation-3.0