Meta-Llama-3-8B-Instruct-4bit
BitsAndBytes 4bit Quantized Model
Quantization Configuration
- load_in_4bit: True
- llm_int8_threshold: 6.0
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
How to use
Load Required Libraries
!pip install transformers
!pip install peft
!pip install -U bitsandbytes
Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("SwastikM/Meta-Llama-3-8B-Instruct_bitsandbytes_4bit")
messages = [
{"role": "system", "content": "You are a Coder."},
{"role": "user", "content": "How to ctrate a list in Python?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=False,
temperature=0.0
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Output
In Python, you can create a list in several ways:
1. Using the `list()` function:
my_list = list()
This creates an empty list.
2. Using square brackets `[]`:
my_list = []
This also creates an empty list.
3. Using the `list()` function with an iterable (such as a string or a tuple):
my_list = list("hello")
print(my_list) # Output: ['h', 'e', 'l', 'l', 'o']
4. Using the `list()` function with a range of numbers:
my_list = list(range(1, 6))
print(my_list) # Output: [1, 2, 3, 4, 5]
5. Using the `list()` function with a dictionary:
my_dict = {"a": 1, "b": 2, "c": 3}
my_list = list(my_dict.keys())
print(my_list) # Output: ['a', 'b', 'c']
Note that in Python, lists are mutable, meaning you can add, remove, or modify elements after creating the list.
Size Comparison
The table shows comparison VRAM requirements for loading and training of FP16 Base Model and 4bit GPTQ quantized model with PEFT. The value for base model referenced from Model Memory Calculator from HuggingFace
Model | Total Size |
---|---|
Base Model | 28 GB |
4bitQuantized | 5.21 GB |
Acknowledgment
- Thanks to @AMerve Noyan for precise intro.
- Thanks to @HuggungFace Team for the Blog.
- Thanks to @Meta for the Open Source Model.
Model Card Authors
Swastik Maiti
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.