English

Using HunyuanDiT ControlNet

Instructions

The dependencies and installation are basically the same as the base model.

We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.

Download the model using the following commands:

cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them.
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckpts/t2i/controlnet
huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model

# Quick start
python sample_controlnet.py --infer-mode fa --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0

Examples of condition input and ControlNet results are as follows:

Condition Input
Canny ControlNet Depth ControlNet Pose ControlNet
在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围
(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.)
在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果
(In the dense forest, a black and white panda sits quietly among the green trees and red flowers, surrounded by mountains and oceans. The background is a daytime forest with ample light. The photo uses a close-up, eye-level, and centered composition to create a realistic effect.)
在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围
(In the daytime forest, an Asian woman wearing a green shirt stands beside an elephant. The photo uses a medium shot, eye-level, and centered composition to create a realistic effect. This picture embodies the character photography culture and conveys a serene atmosphere.)
Image 0 Image 1 Image 2
ControlNet Output
Image 3 Image 4 Image 5

Training

We utilize DWPose for pose extraction. Please follow their guidelines to download the checkpoints and save them to hydit/annotator/ckpts directory. We provide serveral commands to quick install:

mkdir ./hydit/annotator/ckpts
wget -O ./hydit/annotator/ckpts/dwpose.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/dwpose.zip
unzip ./hydit/annotator/ckpts/dwpose.zip -d ./hydit/annotator/ckpts/

Additionally, ensure that you install the related dependencies.

pip install matplotlib==3.7.5
pip install onnxruntime_gpu==1.16.3
pip install opencv-python==4.8.1.78

We provide three types of weights for ControlNet training, ema, module and distill, and you can choose according to the actual effects. By default, we use distill weights.

Here is an example, we load the distill weights into the main model and conduct ControlNet training.

If apply multiple resolution training, you need to add the --multireso and --reso-step 64 parameter.

task_flag="canny_controlnet"                                   # the task flag is used to identify folders.
control_type=canny
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt  # checkpoint root for resume
index_file=/path/to/your/indexfile                             # index file for dataloader
results_dir=./log_EXP                                          # save root for results
batch_size=1                                                   # training batch size
image_size=1024                                                # training image resolution
grad_accu_steps=2                                              # gradient accumulation
warmup_num_steps=0                                             # warm-up steps
lr=0.0001                                                      # learning rate
ckpt_every=10000                                               # create a ckpt every a few steps.
ckpt_latest_every=5000                                         # create a ckpt named `latest.pt` every a few steps.
epochs=100                                                     # total training epochs


sh $(dirname "$0")/run_g_controlnet.sh \
    --task-flag ${task_flag} \
    --control-type ${control_type} \
    --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
    --predict-type v_prediction \
    --uncond-p 0.44 \
    --uncond-p-t5 0.44 \
    --index-file ${index_file} \
    --random-flip \
    --lr ${lr} \
    --batch-size ${batch_size} \
    --image-size ${image_size} \
    --global-seed 999 \
    --grad-accu-steps ${grad_accu_steps} \
    --warmup-num-steps ${warmup_num_steps} \
    --use-flash-attn \
    --use-fp16 \
    --results-dir ${results_dir} \
    --resume \
    --resume-module-root ${resume_module_root} \
    --epochs ${epochs} \
    --ckpt-every ${ckpt_every} \
    --ckpt-latest-every ${ckpt_latest_every} \
    --log-every 10 \
    --deepspeed \
    --deepspeed-optimizer \
    --use-zero-stage 2 \
    --gradient-checkpointing \
    "$@"

Recommended parameter settings

Parameter Description Recommended Parameter Value Note
--batch-size Training batch size 1 Depends on GPU memory
--grad-accu-steps Size of gradient accumulation 2 -
--lr Learning rate 0.0001 -
--control-type ControlNet condition type, support 3 types now (canny, depth and pose) / -

Inference

You can use the following command line for inference.

a. You can use a float to specify the weight for all layers, or use a list to separately specify the weight for each layer, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]'

python sample_controlnet.py --infer-mode fa --control-weight "[1.0 * (0.825 ** float(19 - i)) for i in range(19)]" --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg

b. Using canny ControlNet during inference

python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg

c. Using depth ControlNet during inference

python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果" --condition-image-path controlnet/asset/input/depth.jpg

d. Using pose ControlNet during inference

python3 sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围" --condition-image-path controlnet/asset/input/pose.jpg

HunyuanDiT Controlnet v1.1

Instructions

Download the v1.1 base model and controlnet using the following commands:

cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them.
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.1 --local-dir ./HunyuanDiT-v1.1/t2i/controlnet
huggingface-cli download Tencent-Hunyuan/Distillation-v1.1 ./pytorch_model_distill.pt --local-dir ./HunyuanDiT-v1.1/t2i/model

Training

task_flag="canny_controlnet"                                # the task flag is used to identify folders.
control_type=canny
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt  # checkpoint root for resume
index_file=/path/to/your/indexfile                           # index file for dataloader
results_dir=./log_EXP                                        # save root for results
batch_size=1                                                 # training batch size
image_size=1024                                              # training image resolution
grad_accu_steps=2                                            # gradient accumulation
warmup_num_steps=0                                           # warm-up steps
lr=0.0001                                                    # learning rate
ckpt_every=10000                                             # create a ckpt every a few steps.
ckpt_latest_every=5000                                       # create a ckpt named `latest.pt` every a few steps.
epochs=100                                                   # total training epochs


sh $(dirname "$0")/run_g_controlnet.sh \
    --task-flag ${task_flag} \
    --control-type ${control_type} \
    --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
    --predict-type v_prediction \
    --multireso \
    --reso-step 64 \
    --uncond-p 0.44 \
    --uncond-p-t5 0.44 \
    --index-file ${index_file} \
    --random-flip \
    --lr ${lr} \
    --batch-size ${batch_size} \
    --image-size ${image_size} \
    --global-seed 999 \
    --grad-accu-steps ${grad_accu_steps} \
    --warmup-num-steps ${warmup_num_steps} \
    --use-flash-attn \
    --use-fp16 \
    --results-dir ${results_dir} \
    --resume \
    --resume-module-root ${resume_module_root} \
    --epochs ${epochs} \
    --ckpt-every ${ckpt_every} \
    --ckpt-latest-every ${ckpt_latest_every} \
    --log-every 10 \
    --deepspeed \
    --deepspeed-optimizer \
    --use-zero-stage 2 \
    --use-style-cond \
    --size-cond 1024 1024 \
    "$@"

Inference

You can use the following command line for inference.

a. Using canny ControlNet during inference

python3 sample_controlnet.py  --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03

b. Using depth ControlNet during inference

python3 sample_controlnet.py  --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition-image-path controlnet/asset/input/depth.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03

c. Using pose ControlNet during inference

python3 sample_controlnet.py  --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .