SegFormer_b2

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on the Cityscapes dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.2516
  • eval_mean_iou: 0.3875
  • eval_mean_accuracy: 0.5066
  • eval_overall_accuracy: 0.9043
  • eval_accuracy_unlabeled: nan
  • eval_accuracy_ego vehicle: nan
  • eval_accuracy_rectification border: nan
  • eval_accuracy_out of roi: nan
  • eval_accuracy_static: nan
  • eval_accuracy_dynamic: nan
  • eval_accuracy_ground: nan
  • eval_accuracy_road: 0.9832
  • eval_accuracy_sidewalk: 0.8421
  • eval_accuracy_parking: nan
  • eval_accuracy_rail track: nan
  • eval_accuracy_building: 0.9158
  • eval_accuracy_wall: 0.0
  • eval_accuracy_fence: 0.0
  • eval_accuracy_guard rail: nan
  • eval_accuracy_bridge: nan
  • eval_accuracy_tunnel: nan
  • eval_accuracy_pole: 0.5362
  • eval_accuracy_polegroup: nan
  • eval_accuracy_traffic light: 0.5814
  • eval_accuracy_traffic sign: 0.7376
  • eval_accuracy_vegetation: 0.9188
  • eval_accuracy_terrain: 0.6737
  • eval_accuracy_sky: 0.9746
  • eval_accuracy_person: 0.7788
  • eval_accuracy_rider: 0.0
  • eval_accuracy_car: 0.9354
  • eval_accuracy_truck: 0.0
  • eval_accuracy_bus: 0.0
  • eval_accuracy_caravan: nan
  • eval_accuracy_trailer: nan
  • eval_accuracy_train: 0.0
  • eval_accuracy_motorcycle: 0.0
  • eval_accuracy_bicycle: 0.7472
  • eval_accuracy_license plate: nan
  • eval_iou_unlabeled: nan
  • eval_iou_ego vehicle: nan
  • eval_iou_rectification border: nan
  • eval_iou_out of roi: nan
  • eval_iou_static: 0.0
  • eval_iou_dynamic: nan
  • eval_iou_ground: nan
  • eval_iou_road: 0.9649
  • eval_iou_sidewalk: 0.7403
  • eval_iou_parking: nan
  • eval_iou_rail track: nan
  • eval_iou_building: 0.8430
  • eval_iou_wall: 0.0
  • eval_iou_fence: 0.0
  • eval_iou_guard rail: nan
  • eval_iou_bridge: nan
  • eval_iou_tunnel: nan
  • eval_iou_pole: 0.3619
  • eval_iou_polegroup: nan
  • eval_iou_traffic light: 0.4506
  • eval_iou_traffic sign: 0.5317
  • eval_iou_vegetation: 0.8647
  • eval_iou_terrain: 0.4610
  • eval_iou_sky: 0.8806
  • eval_iou_person: 0.5967
  • eval_iou_rider: 0.0
  • eval_iou_car: 0.8756
  • eval_iou_truck: 0.0
  • eval_iou_bus: 0.0
  • eval_iou_caravan: nan
  • eval_iou_trailer: nan
  • eval_iou_train: 0.0
  • eval_iou_motorcycle: 0.0
  • eval_iou_bicycle: 0.5665
  • eval_iou_license plate: 0.0
  • eval_runtime: 185.4692
  • eval_samples_per_second: 2.696
  • eval_steps_per_second: 0.674
  • epoch: 20.4301
  • step: 3800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vrjb/SegFormer_b2

Finetuned
(2)
this model