Image Classification
Transformers
PyTorch
vit
Trained with AutoTrain
Eval Results
Inference Endpoints
abhishek's picture
abhishek HF staff
Update README.md
195eb78
---
tags: autotrain
datasets:
- abhishek/autotrain-data-vision_652fee16113a4f07a2452e021a22a934
- sasha/dog-food
co2_eq_emissions: 2.050948967287266
model-index:
- name: autotrain-dog-vs-food
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: sasha/dog-food
type: sasha/dog-food
metrics:
- name: Accuracy
type: accuracy
value: 0.9976190476190476
- task:
type: image-classification
name: Image Classification
dataset:
name: sasha/dog-food
type: sasha/dog-food
config: sasha--dog-food
split: test
metrics:
- name: Accuracy
type: accuracy
value: 1.0
verified: true
- name: Precision
type: precision
value: 1.0
verified: true
- name: Recall
type: recall
value: 1.0
verified: true
- name: AUC
type: auc
value: 1.0
verified: true
- name: F1
type: f1
value: 1.0
verified: true
- name: loss
type: loss
value: 0.001115015591494739
verified: true
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 264300
- CO2 Emissions (in grams): 2.050948967287266
## Validation Metrics
- Loss: 0.009216072037816048
- Accuracy: 0.9976190476190476
- Macro F1: 0.9973261861865685
- Micro F1: 0.9976190476190476
- Weighted F1: 0.997621154535828
- Macro Precision: 0.9964539007092199
- Micro Precision: 0.9976190476190476
- Weighted Precision: 0.9976359338061465
- Macro Recall: 0.9982142857142857
- Micro Recall: 0.9976190476190476
- Weighted Recall: 0.9976190476190476