Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage


from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "PATH_TO_THIS_REPO"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 28.48
IFEval (0-Shot) 54.06
BBH (3-Shot) 39.88
MATH Lvl 5 (4-Shot) 18.73
GPQA (0-shot) 5.82
MuSR (0-shot) 9.95
MMLU-PRO (5-shot) 42.42
Downloads last month
2,789
Safetensors
Model size
70.6B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abhishek/autotrain-llama3-70b-orpo-v2

Quantizations
1 model

Evaluation results