Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage


from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "PATH_TO_THIS_REPO"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 18.40
IFEval (0-Shot) 21.42
BBH (3-Shot) 28.46
MATH Lvl 5 (4-Shot) 12.54
GPQA (0-shot) 9.28
MuSR (0-shot) 9.04
MMLU-PRO (5-shot) 29.63
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abhishek/autotrain-vr4a1-e5mms

Finetuned
(605)
this model

Dataset used to train abhishek/autotrain-vr4a1-e5mms

Evaluation results