See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: b-mc2/sql-create-context
type:
# JSONL file contains question, context, answer fields per line.
# This gets mapped to instruction, input, output axolotl tags.
field_instruction: question
field_input: context
field_output: answer
# Format is used by axolotl to generate the prompt.
format: |-
[INST] Using the schema context below, generate a SQL query that answers the question.
{input}
{instruction} [/INST]
tokens: # add new control tokens from the dataset to the model
- "[INST]"
- " [/INST]"
- "[SQL]"
- " [/SQL]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral-sql-create-context-lora
hub_model_id: ahmedsamirio/mistral-sql-create-context-lora
# This is set to 4096 in the modal config, why?
# Since I'm using sample packing, decreasing the sequence length will create smaller batches
# which can fit better into memory
sequence_len: 8192
# These is set to false in the modal example, why? (Modal also uses FSDP which might be a reason)
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
- embed_tokens
- lm_head
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: mistral-sql-create-context
wandb_entity: ahmedsamirio
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# What is this?
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
# This wasn't set in modal config
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
- Downloads last month
- 0
Model tree for ahmedsamirio/mistral-sql-create-context-lora
Base model
mistralai/Mistral-7B-v0.3