|
--- |
|
model-index: |
|
- name: ru-en-RoSBERTa |
|
results: |
|
- dataset: |
|
config: default |
|
name: MTEB CEDRClassification (default) |
|
revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 |
|
split: test |
|
type: ai-forever/cedr-classification |
|
metrics: |
|
- type: accuracy |
|
value: 44.68650371944739 |
|
- type: f1 |
|
value: 40.7601061886426 |
|
- type: lrap |
|
value: 70.69633368756747 |
|
- type: main_score |
|
value: 44.68650371944739 |
|
task: |
|
type: MultilabelClassification |
|
- dataset: |
|
config: default |
|
name: MTEB GeoreviewClassification (default) |
|
revision: 3765c0d1de6b7d264bc459433c45e5a75513839c |
|
split: test |
|
type: ai-forever/georeview-classification |
|
metrics: |
|
- type: accuracy |
|
value: 49.697265625 |
|
- type: f1 |
|
value: 47.793186725286866 |
|
- type: f1_weighted |
|
value: 47.79131720298068 |
|
- type: main_score |
|
value: 49.697265625 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB GeoreviewClusteringP2P (default) |
|
revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec |
|
split: test |
|
type: ai-forever/georeview-clustering-p2p |
|
metrics: |
|
- type: main_score |
|
value: 65.42249614873316 |
|
- type: v_measure |
|
value: 65.42249614873316 |
|
- type: v_measure_std |
|
value: 0.8524815312312278 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB HeadlineClassification (default) |
|
revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb |
|
split: test |
|
type: ai-forever/headline-classification |
|
metrics: |
|
- type: accuracy |
|
value: 78.0029296875 |
|
- type: f1 |
|
value: 77.95151940601424 |
|
- type: f1_weighted |
|
value: 77.95054643947716 |
|
- type: main_score |
|
value: 78.0029296875 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB InappropriatenessClassification (default) |
|
revision: 601651fdc45ef243751676e62dd7a19f491c0285 |
|
split: test |
|
type: ai-forever/inappropriateness-classification |
|
metrics: |
|
- type: accuracy |
|
value: 61.32324218750001 |
|
- type: ap |
|
value: 57.11029460364367 |
|
- type: ap_weighted |
|
value: 57.11029460364367 |
|
- type: f1 |
|
value: 60.971337406307214 |
|
- type: f1_weighted |
|
value: 60.971337406307214 |
|
- type: main_score |
|
value: 61.32324218750001 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB KinopoiskClassification (default) |
|
revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 |
|
split: test |
|
type: ai-forever/kinopoisk-sentiment-classification |
|
metrics: |
|
- type: accuracy |
|
value: 63.27333333333334 |
|
- type: f1 |
|
value: 61.007042785228116 |
|
- type: f1_weighted |
|
value: 61.007042785228116 |
|
- type: main_score |
|
value: 63.27333333333334 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: ru |
|
name: MTEB MIRACLReranking (ru) |
|
revision: 6d1962c527217f8927fca80f890f14f36b2802af |
|
split: dev |
|
type: miracl/mmteb-miracl-reranking |
|
metrics: |
|
- type: MAP@1(MIRACL) |
|
value: 30.691000000000003 |
|
- type: MAP@10(MIRACL) |
|
value: 49.178 |
|
- type: MAP@100(MIRACL) |
|
value: 51.225 |
|
- type: MAP@1000(MIRACL) |
|
value: 51.225 |
|
- type: MAP@20(MIRACL) |
|
value: 50.613 |
|
- type: MAP@3(MIRACL) |
|
value: 42.457 |
|
- type: MAP@5(MIRACL) |
|
value: 46.172000000000004 |
|
- type: NDCG@1(MIRACL) |
|
value: 51.002 |
|
- type: NDCG@10(MIRACL) |
|
value: 56.912 |
|
- type: NDCG@100(MIRACL) |
|
value: 61.197 |
|
- type: NDCG@1000(MIRACL) |
|
value: 61.197 |
|
- type: NDCG@20(MIRACL) |
|
value: 59.453 |
|
- type: NDCG@3(MIRACL) |
|
value: 51.083 |
|
- type: NDCG@5(MIRACL) |
|
value: 53.358000000000004 |
|
- type: P@1(MIRACL) |
|
value: 51.002 |
|
- type: P@10(MIRACL) |
|
value: 14.852000000000002 |
|
- type: P@100(MIRACL) |
|
value: 1.9529999999999998 |
|
- type: P@1000(MIRACL) |
|
value: 0.19499999999999998 |
|
- type: P@20(MIRACL) |
|
value: 8.657 |
|
- type: P@3(MIRACL) |
|
value: 31.435000000000002 |
|
- type: P@5(MIRACL) |
|
value: 23.608999999999998 |
|
- type: Recall@1(MIRACL) |
|
value: 30.691000000000003 |
|
- type: Recall@10(MIRACL) |
|
value: 67.006 |
|
- type: Recall@100(MIRACL) |
|
value: 79.952 |
|
- type: Recall@1000(MIRACL) |
|
value: 79.952 |
|
- type: Recall@20(MIRACL) |
|
value: 73.811 |
|
- type: Recall@3(MIRACL) |
|
value: 49.142 |
|
- type: Recall@5(MIRACL) |
|
value: 57.553 |
|
- type: main_score |
|
value: 56.912 |
|
- type: nAUC_MAP@1000_diff1(MIRACL) |
|
value: 10.786403475779332 |
|
- type: nAUC_MAP@1000_max(MIRACL) |
|
value: 29.477246196287275 |
|
- type: nAUC_MAP@1000_std(MIRACL) |
|
value: 15.938834129839046 |
|
- type: nAUC_MAP@100_diff1(MIRACL) |
|
value: 10.786403475779332 |
|
- type: nAUC_MAP@100_max(MIRACL) |
|
value: 29.477246196287275 |
|
- type: nAUC_MAP@100_std(MIRACL) |
|
value: 15.938834129839046 |
|
- type: nAUC_MAP@10_diff1(MIRACL) |
|
value: 12.255091348037595 |
|
- type: nAUC_MAP@10_max(MIRACL) |
|
value: 26.72625370045134 |
|
- type: nAUC_MAP@10_std(MIRACL) |
|
value: 14.180071586837812 |
|
- type: nAUC_MAP@1_diff1(MIRACL) |
|
value: 28.616487922173768 |
|
- type: nAUC_MAP@1_max(MIRACL) |
|
value: 12.986192530664518 |
|
- type: nAUC_MAP@1_std(MIRACL) |
|
value: 4.086145762604503 |
|
- type: nAUC_MAP@20_diff1(MIRACL) |
|
value: 11.360341572700476 |
|
- type: nAUC_MAP@20_max(MIRACL) |
|
value: 28.612330384153832 |
|
- type: nAUC_MAP@20_std(MIRACL) |
|
value: 15.787480742877937 |
|
- type: nAUC_MAP@3_diff1(MIRACL) |
|
value: 18.033783954867623 |
|
- type: nAUC_MAP@3_max(MIRACL) |
|
value: 20.97092332905034 |
|
- type: nAUC_MAP@3_std(MIRACL) |
|
value: 9.106058710108279 |
|
- type: nAUC_MAP@5_diff1(MIRACL) |
|
value: 14.784231238848433 |
|
- type: nAUC_MAP@5_max(MIRACL) |
|
value: 23.841145797143 |
|
- type: nAUC_MAP@5_std(MIRACL) |
|
value: 11.25686258970321 |
|
- type: nAUC_NDCG@1000_diff1(MIRACL) |
|
value: 1.4728095471561125 |
|
- type: nAUC_NDCG@1000_max(MIRACL) |
|
value: 39.84262968697792 |
|
- type: nAUC_NDCG@1000_std(MIRACL) |
|
value: 22.4186410243652 |
|
- type: nAUC_NDCG@100_diff1(MIRACL) |
|
value: 1.4728095471561125 |
|
- type: nAUC_NDCG@100_max(MIRACL) |
|
value: 39.84262968697792 |
|
- type: nAUC_NDCG@100_std(MIRACL) |
|
value: 22.4186410243652 |
|
- type: nAUC_NDCG@10_diff1(MIRACL) |
|
value: 5.242996478950954 |
|
- type: nAUC_NDCG@10_max(MIRACL) |
|
value: 33.86925934510759 |
|
- type: nAUC_NDCG@10_std(MIRACL) |
|
value: 19.457386638149625 |
|
- type: nAUC_NDCG@1_diff1(MIRACL) |
|
value: 16.925455715967676 |
|
- type: nAUC_NDCG@1_max(MIRACL) |
|
value: 36.72266755084653 |
|
- type: nAUC_NDCG@1_std(MIRACL) |
|
value: 18.357456476212622 |
|
- type: nAUC_NDCG@20_diff1(MIRACL) |
|
value: 3.361697278095995 |
|
- type: nAUC_NDCG@20_max(MIRACL) |
|
value: 37.38923489423496 |
|
- type: nAUC_NDCG@20_std(MIRACL) |
|
value: 22.29168372402657 |
|
- type: nAUC_NDCG@3_diff1(MIRACL) |
|
value: 10.936904314592084 |
|
- type: nAUC_NDCG@3_max(MIRACL) |
|
value: 30.547718047674284 |
|
- type: nAUC_NDCG@3_std(MIRACL) |
|
value: 15.142352896765665 |
|
- type: nAUC_NDCG@5_diff1(MIRACL) |
|
value: 8.618074920961075 |
|
- type: nAUC_NDCG@5_max(MIRACL) |
|
value: 30.808600807482367 |
|
- type: nAUC_NDCG@5_std(MIRACL) |
|
value: 15.793512242130051 |
|
- type: nAUC_P@1000_diff1(MIRACL) |
|
value: -24.81839490148569 |
|
- type: nAUC_P@1000_max(MIRACL) |
|
value: 34.16200383739091 |
|
- type: nAUC_P@1000_std(MIRACL) |
|
value: 20.95890369662007 |
|
- type: nAUC_P@100_diff1(MIRACL) |
|
value: -24.818394901485657 |
|
- type: nAUC_P@100_max(MIRACL) |
|
value: 34.16200383739092 |
|
- type: nAUC_P@100_std(MIRACL) |
|
value: 20.958903696620112 |
|
- type: nAUC_P@10_diff1(MIRACL) |
|
value: -22.646461560750986 |
|
- type: nAUC_P@10_max(MIRACL) |
|
value: 34.57373514819872 |
|
- type: nAUC_P@10_std(MIRACL) |
|
value: 24.27599718176041 |
|
- type: nAUC_P@1_diff1(MIRACL) |
|
value: 16.925455715967676 |
|
- type: nAUC_P@1_max(MIRACL) |
|
value: 36.72266755084653 |
|
- type: nAUC_P@1_std(MIRACL) |
|
value: 18.357456476212622 |
|
- type: nAUC_P@20_diff1(MIRACL) |
|
value: -23.33449798384014 |
|
- type: nAUC_P@20_max(MIRACL) |
|
value: 34.92822081787735 |
|
- type: nAUC_P@20_std(MIRACL) |
|
value: 25.048280657629267 |
|
- type: nAUC_P@3_diff1(MIRACL) |
|
value: -11.60659490286 |
|
- type: nAUC_P@3_max(MIRACL) |
|
value: 38.187883056013035 |
|
- type: nAUC_P@3_std(MIRACL) |
|
value: 21.234776997940628 |
|
- type: nAUC_P@5_diff1(MIRACL) |
|
value: -18.86697977242918 |
|
- type: nAUC_P@5_max(MIRACL) |
|
value: 35.6110661197626 |
|
- type: nAUC_P@5_std(MIRACL) |
|
value: 22.11165620702996 |
|
- type: nAUC_Recall@1000_diff1(MIRACL) |
|
value: -31.456413113303867 |
|
- type: nAUC_Recall@1000_max(MIRACL) |
|
value: 63.785265733309636 |
|
- type: nAUC_Recall@1000_std(MIRACL) |
|
value: 36.587933217871914 |
|
- type: nAUC_Recall@100_diff1(MIRACL) |
|
value: -31.456413113303867 |
|
- type: nAUC_Recall@100_max(MIRACL) |
|
value: 63.785265733309636 |
|
- type: nAUC_Recall@100_std(MIRACL) |
|
value: 36.587933217871914 |
|
- type: nAUC_Recall@10_diff1(MIRACL) |
|
value: -9.518740341549913 |
|
- type: nAUC_Recall@10_max(MIRACL) |
|
value: 35.00853357699468 |
|
- type: nAUC_Recall@10_std(MIRACL) |
|
value: 22.79313936486099 |
|
- type: nAUC_Recall@1_diff1(MIRACL) |
|
value: 28.616487922173768 |
|
- type: nAUC_Recall@1_max(MIRACL) |
|
value: 12.986192530664518 |
|
- type: nAUC_Recall@1_std(MIRACL) |
|
value: 4.086145762604503 |
|
- type: nAUC_Recall@20_diff1(MIRACL) |
|
value: -17.771143411342166 |
|
- type: nAUC_Recall@20_max(MIRACL) |
|
value: 47.59780316487735 |
|
- type: nAUC_Recall@20_std(MIRACL) |
|
value: 33.25494707686132 |
|
- type: nAUC_Recall@3_diff1(MIRACL) |
|
value: 10.171226133119783 |
|
- type: nAUC_Recall@3_max(MIRACL) |
|
value: 21.097634288680847 |
|
- type: nAUC_Recall@3_std(MIRACL) |
|
value: 10.087211861733298 |
|
- type: nAUC_Recall@5_diff1(MIRACL) |
|
value: 1.6868374913242932 |
|
- type: nAUC_Recall@5_max(MIRACL) |
|
value: 25.874440474993165 |
|
- type: nAUC_Recall@5_std(MIRACL) |
|
value: 13.46380924822079 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: ru |
|
name: MTEB MIRACLRetrieval (ru) |
|
revision: main |
|
split: dev |
|
type: miracl/mmteb-miracl |
|
metrics: |
|
- type: main_score |
|
value: 53.909 |
|
- type: map_at_1 |
|
value: 24.308 |
|
- type: map_at_10 |
|
value: 43.258 |
|
- type: map_at_100 |
|
value: 46.053 |
|
- type: map_at_1000 |
|
value: 46.176 |
|
- type: map_at_20 |
|
value: 44.962 |
|
- type: map_at_3 |
|
value: 36.129 |
|
- type: map_at_5 |
|
value: 40.077 |
|
- type: mrr_at_1 |
|
value: 49.92012779552716 |
|
- type: mrr_at_10 |
|
value: 62.639554490592865 |
|
- type: mrr_at_100 |
|
value: 63.09260401526302 |
|
- type: mrr_at_1000 |
|
value: 63.10428906436666 |
|
- type: mrr_at_20 |
|
value: 62.94919151853632 |
|
- type: mrr_at_3 |
|
value: 60.15708200212997 |
|
- type: mrr_at_5 |
|
value: 61.83439829605969 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 24.249990208199268 |
|
- type: nauc_map_at_1000_max |
|
value: 25.29688440384686 |
|
- type: nauc_map_at_1000_std |
|
value: 2.4312163206740536 |
|
- type: nauc_map_at_100_diff1 |
|
value: 24.2554939267347 |
|
- type: nauc_map_at_100_max |
|
value: 25.25054164924535 |
|
- type: nauc_map_at_100_std |
|
value: 2.4121726280069757 |
|
- type: nauc_map_at_10_diff1 |
|
value: 24.411765629418987 |
|
- type: nauc_map_at_10_max |
|
value: 23.13035697774593 |
|
- type: nauc_map_at_10_std |
|
value: -0.1673711528601927 |
|
- type: nauc_map_at_1_diff1 |
|
value: 30.55123128484441 |
|
- type: nauc_map_at_1_max |
|
value: 13.83849108263988 |
|
- type: nauc_map_at_1_std |
|
value: -7.087181528435525 |
|
- type: nauc_map_at_20_diff1 |
|
value: 24.125033292556417 |
|
- type: nauc_map_at_20_max |
|
value: 24.563171125814296 |
|
- type: nauc_map_at_20_std |
|
value: 1.266006461448722 |
|
- type: nauc_map_at_3_diff1 |
|
value: 25.71581305774253 |
|
- type: nauc_map_at_3_max |
|
value: 18.708623514300097 |
|
- type: nauc_map_at_3_std |
|
value: -4.772722288463871 |
|
- type: nauc_map_at_5_diff1 |
|
value: 25.352787694389097 |
|
- type: nauc_map_at_5_max |
|
value: 20.974296353287084 |
|
- type: nauc_map_at_5_std |
|
value: -3.4007260047029835 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 29.492072727604622 |
|
- type: nauc_mrr_at_1000_max |
|
value: 34.60333674990558 |
|
- type: nauc_mrr_at_1000_std |
|
value: 11.223537361751173 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 29.47919553914885 |
|
- type: nauc_mrr_at_100_max |
|
value: 34.618795300361995 |
|
- type: nauc_mrr_at_100_std |
|
value: 11.243824787491663 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 29.481060608078298 |
|
- type: nauc_mrr_at_10_max |
|
value: 34.752363175415745 |
|
- type: nauc_mrr_at_10_std |
|
value: 10.98618160728943 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 31.81056902767142 |
|
- type: nauc_mrr_at_1_max |
|
value: 30.351978574096773 |
|
- type: nauc_mrr_at_1_std |
|
value: 9.735911194663025 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 29.390754002995035 |
|
- type: nauc_mrr_at_20_max |
|
value: 34.75816984434079 |
|
- type: nauc_mrr_at_20_std |
|
value: 11.325226515477347 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 29.948364490803186 |
|
- type: nauc_mrr_at_3_max |
|
value: 33.973850208221556 |
|
- type: nauc_mrr_at_3_std |
|
value: 9.988883050022485 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 29.477773016468696 |
|
- type: nauc_mrr_at_5_max |
|
value: 34.38532892473932 |
|
- type: nauc_mrr_at_5_std |
|
value: 10.206783034393654 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 24.15494700259076 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 32.367504385127035 |
|
- type: nauc_ndcg_at_1000_std |
|
value: 10.372857487814498 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 23.97247958991815 |
|
- type: nauc_ndcg_at_100_max |
|
value: 32.21110774026889 |
|
- type: nauc_ndcg_at_100_std |
|
value: 11.065328347817761 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 24.038789867355796 |
|
- type: nauc_ndcg_at_10_max |
|
value: 28.14682223937745 |
|
- type: nauc_ndcg_at_10_std |
|
value: 4.518525314723316 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 31.81056902767142 |
|
- type: nauc_ndcg_at_1_max |
|
value: 30.351978574096773 |
|
- type: nauc_ndcg_at_1_std |
|
value: 9.735911194663025 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 23.157990079778138 |
|
- type: nauc_ndcg_at_20_max |
|
value: 30.521172934621703 |
|
- type: nauc_ndcg_at_20_std |
|
value: 7.660125728373433 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 24.44153871615053 |
|
- type: nauc_ndcg_at_3_max |
|
value: 27.08209732696818 |
|
- type: nauc_ndcg_at_3_std |
|
value: 3.8766269917792537 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 24.952468410841863 |
|
- type: nauc_ndcg_at_5_max |
|
value: 26.29873769608537 |
|
- type: nauc_ndcg_at_5_std |
|
value: 1.3359423751654511 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: -9.104010991734798 |
|
- type: nauc_precision_at_1000_max |
|
value: 20.36838078039637 |
|
- type: nauc_precision_at_1000_std |
|
value: 26.889986331386297 |
|
- type: nauc_precision_at_100_diff1 |
|
value: -7.181546793298205 |
|
- type: nauc_precision_at_100_max |
|
value: 24.32969645433586 |
|
- type: nauc_precision_at_100_std |
|
value: 31.546209514202232 |
|
- type: nauc_precision_at_10_diff1 |
|
value: -1.0044021788494442 |
|
- type: nauc_precision_at_10_max |
|
value: 29.37074096666726 |
|
- type: nauc_precision_at_10_std |
|
value: 25.000959926288214 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 31.81056902767142 |
|
- type: nauc_precision_at_1_max |
|
value: 30.351978574096773 |
|
- type: nauc_precision_at_1_std |
|
value: 9.735911194663025 |
|
- type: nauc_precision_at_20_diff1 |
|
value: -5.242529022989003 |
|
- type: nauc_precision_at_20_max |
|
value: 28.199268120740822 |
|
- type: nauc_precision_at_20_std |
|
value: 28.460986811065037 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 9.46419634664173 |
|
- type: nauc_precision_at_3_max |
|
value: 32.203956451949914 |
|
- type: nauc_precision_at_3_std |
|
value: 16.4095713138301 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 3.719098257572974 |
|
- type: nauc_precision_at_5_max |
|
value: 30.53411024247047 |
|
- type: nauc_precision_at_5_std |
|
value: 17.926227114457067 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: 12.347919922311121 |
|
- type: nauc_recall_at_1000_max |
|
value: 62.10824756167678 |
|
- type: nauc_recall_at_1000_std |
|
value: 65.9625810682273 |
|
- type: nauc_recall_at_100_diff1 |
|
value: 11.945066948287723 |
|
- type: nauc_recall_at_100_max |
|
value: 37.07070306829974 |
|
- type: nauc_recall_at_100_std |
|
value: 38.76495395051901 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 14.793964290237943 |
|
- type: nauc_recall_at_10_max |
|
value: 23.170920682517334 |
|
- type: nauc_recall_at_10_std |
|
value: 5.07461971737137 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 30.55123128484441 |
|
- type: nauc_recall_at_1_max |
|
value: 13.83849108263988 |
|
- type: nauc_recall_at_1_std |
|
value: -7.087181528435525 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 10.349310874535616 |
|
- type: nauc_recall_at_20_max |
|
value: 27.72667852012557 |
|
- type: nauc_recall_at_20_std |
|
value: 13.37946493360006 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 20.660181561801195 |
|
- type: nauc_recall_at_3_max |
|
value: 16.734608747226137 |
|
- type: nauc_recall_at_3_std |
|
value: -5.887299100086449 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 19.292387971699007 |
|
- type: nauc_recall_at_5_max |
|
value: 18.151647291256193 |
|
- type: nauc_recall_at_5_std |
|
value: -5.3874570564310895 |
|
- type: ndcg_at_1 |
|
value: 49.919999999999995 |
|
- type: ndcg_at_10 |
|
value: 53.909 |
|
- type: ndcg_at_100 |
|
value: 61.346999999999994 |
|
- type: ndcg_at_1000 |
|
value: 62.831 |
|
- type: ndcg_at_20 |
|
value: 57.44200000000001 |
|
- type: ndcg_at_3 |
|
value: 48.034 |
|
- type: ndcg_at_5 |
|
value: 50.151 |
|
- type: precision_at_1 |
|
value: 49.919999999999995 |
|
- type: precision_at_10 |
|
value: 16.206 |
|
- type: precision_at_100 |
|
value: 2.467 |
|
- type: precision_at_1000 |
|
value: 0.27499999999999997 |
|
- type: precision_at_20 |
|
value: 9.847999999999999 |
|
- type: precision_at_3 |
|
value: 33.013999999999996 |
|
- type: precision_at_5 |
|
value: 25.495 |
|
- type: recall_at_1 |
|
value: 24.308 |
|
- type: recall_at_10 |
|
value: 64.226 |
|
- type: recall_at_100 |
|
value: 88.532 |
|
- type: recall_at_1000 |
|
value: 96.702 |
|
- type: recall_at_20 |
|
value: 73.855 |
|
- type: recall_at_3 |
|
value: 43.75 |
|
- type: recall_at_5 |
|
value: 53.293 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ru |
|
name: MTEB MassiveIntentClassification (ru) |
|
revision: 4672e20407010da34463acc759c162ca9734bca6 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 66.96704774714189 |
|
- type: f1 |
|
value: 63.75700201120695 |
|
- type: f1_weighted |
|
value: 65.79948352494334 |
|
- type: main_score |
|
value: 66.96704774714189 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: ru |
|
name: MTEB MassiveScenarioClassification (ru) |
|
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 71.79556153328849 |
|
- type: f1 |
|
value: 71.04798190430378 |
|
- type: f1_weighted |
|
value: 71.11136110921589 |
|
- type: main_score |
|
value: 71.79556153328849 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB RUParaPhraserSTS (default) |
|
revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 |
|
split: test |
|
type: merionum/ru_paraphraser |
|
metrics: |
|
- type: cosine_pearson |
|
value: 69.4312341087414 |
|
- type: cosine_spearman |
|
value: 76.16273410937974 |
|
- type: euclidean_pearson |
|
value: 73.59970264325928 |
|
- type: euclidean_spearman |
|
value: 76.16273410937974 |
|
- type: main_score |
|
value: 76.16273410937974 |
|
- type: manhattan_pearson |
|
value: 73.63850191752708 |
|
- type: manhattan_spearman |
|
value: 76.22156395676978 |
|
- type: pearson |
|
value: 69.4312341087414 |
|
- type: spearman |
|
value: 76.16273410937974 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB RiaNewsRetrieval (default) |
|
revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 |
|
split: test |
|
type: ai-forever/ria-news-retrieval |
|
metrics: |
|
- type: main_score |
|
value: 78.864 |
|
- type: map_at_1 |
|
value: 67.61 |
|
- type: map_at_10 |
|
value: 75.44800000000001 |
|
- type: map_at_100 |
|
value: 75.73 |
|
- type: map_at_1000 |
|
value: 75.74 |
|
- type: map_at_20 |
|
value: 75.63 |
|
- type: map_at_3 |
|
value: 74.058 |
|
- type: map_at_5 |
|
value: 74.935 |
|
- type: mrr_at_1 |
|
value: 67.61 |
|
- type: mrr_at_10 |
|
value: 75.44837698412663 |
|
- type: mrr_at_100 |
|
value: 75.7296913526584 |
|
- type: mrr_at_1000 |
|
value: 75.7404584781072 |
|
- type: mrr_at_20 |
|
value: 75.62998240983255 |
|
- type: mrr_at_3 |
|
value: 74.05833333333295 |
|
- type: mrr_at_5 |
|
value: 74.93533333333274 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 76.73003886073126 |
|
- type: nauc_map_at_1000_max |
|
value: 23.880592237559313 |
|
- type: nauc_map_at_1000_std |
|
value: -16.639489061431295 |
|
- type: nauc_map_at_100_diff1 |
|
value: 76.72565072181389 |
|
- type: nauc_map_at_100_max |
|
value: 23.881455390102456 |
|
- type: nauc_map_at_100_std |
|
value: -16.63176355032267 |
|
- type: nauc_map_at_10_diff1 |
|
value: 76.64273887966773 |
|
- type: nauc_map_at_10_max |
|
value: 23.81082154251487 |
|
- type: nauc_map_at_10_std |
|
value: -16.77740307482434 |
|
- type: nauc_map_at_1_diff1 |
|
value: 79.73607180360645 |
|
- type: nauc_map_at_1_max |
|
value: 21.20262368559921 |
|
- type: nauc_map_at_1_std |
|
value: -19.089796155513238 |
|
- type: nauc_map_at_20_diff1 |
|
value: 76.7030611694817 |
|
- type: nauc_map_at_20_max |
|
value: 23.838907707504127 |
|
- type: nauc_map_at_20_std |
|
value: -16.672743811541736 |
|
- type: nauc_map_at_3_diff1 |
|
value: 76.50523775835022 |
|
- type: nauc_map_at_3_max |
|
value: 23.60179905501101 |
|
- type: nauc_map_at_3_std |
|
value: -17.693757802981956 |
|
- type: nauc_map_at_5_diff1 |
|
value: 76.61576372823448 |
|
- type: nauc_map_at_5_max |
|
value: 23.862587318336775 |
|
- type: nauc_map_at_5_std |
|
value: -17.0437966767025 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 76.73003886073126 |
|
- type: nauc_mrr_at_1000_max |
|
value: 23.880592237559313 |
|
- type: nauc_mrr_at_1000_std |
|
value: -16.639489061431295 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 76.72565072181389 |
|
- type: nauc_mrr_at_100_max |
|
value: 23.881455390102456 |
|
- type: nauc_mrr_at_100_std |
|
value: -16.63176355032267 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 76.64273887966773 |
|
- type: nauc_mrr_at_10_max |
|
value: 23.81082154251487 |
|
- type: nauc_mrr_at_10_std |
|
value: -16.77740307482434 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 79.73607180360645 |
|
- type: nauc_mrr_at_1_max |
|
value: 21.20262368559921 |
|
- type: nauc_mrr_at_1_std |
|
value: -19.089796155513238 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 76.7030611694817 |
|
- type: nauc_mrr_at_20_max |
|
value: 23.838907707504127 |
|
- type: nauc_mrr_at_20_std |
|
value: -16.672743811541736 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 76.50523775835022 |
|
- type: nauc_mrr_at_3_max |
|
value: 23.60179905501101 |
|
- type: nauc_mrr_at_3_std |
|
value: -17.693757802981956 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 76.61576372823448 |
|
- type: nauc_mrr_at_5_max |
|
value: 23.862587318336775 |
|
- type: nauc_mrr_at_5_std |
|
value: -17.0437966767025 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 76.016960312922 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 25.434179222015285 |
|
- type: nauc_ndcg_at_1000_std |
|
value: -14.489226598374966 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 75.87402195675239 |
|
- type: nauc_ndcg_at_100_max |
|
value: 25.562687163467295 |
|
- type: nauc_ndcg_at_100_std |
|
value: -14.165819919505346 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 75.47305900096035 |
|
- type: nauc_ndcg_at_10_max |
|
value: 24.9111489869184 |
|
- type: nauc_ndcg_at_10_std |
|
value: -15.106328069022739 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 79.73607180360645 |
|
- type: nauc_ndcg_at_1_max |
|
value: 21.20262368559921 |
|
- type: nauc_ndcg_at_1_std |
|
value: -19.089796155513238 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 75.71180859144839 |
|
- type: nauc_ndcg_at_20_max |
|
value: 25.12671193294504 |
|
- type: nauc_ndcg_at_20_std |
|
value: -14.582900241958443 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 75.32126900936046 |
|
- type: nauc_ndcg_at_3_max |
|
value: 24.39543091769943 |
|
- type: nauc_ndcg_at_3_std |
|
value: -17.183511551234538 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 75.46170695160178 |
|
- type: nauc_ndcg_at_5_max |
|
value: 25.001670951020937 |
|
- type: nauc_ndcg_at_5_std |
|
value: -15.861405796419376 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: 65.48397136632431 |
|
- type: nauc_precision_at_1000_max |
|
value: 77.05533391807842 |
|
- type: nauc_precision_at_1000_std |
|
value: 54.14509238038628 |
|
- type: nauc_precision_at_100_diff1 |
|
value: 66.6077978535527 |
|
- type: nauc_precision_at_100_max |
|
value: 54.07639576230772 |
|
- type: nauc_precision_at_100_std |
|
value: 28.071043659958185 |
|
- type: nauc_precision_at_10_diff1 |
|
value: 68.71592258481675 |
|
- type: nauc_precision_at_10_max |
|
value: 31.40944055975099 |
|
- type: nauc_precision_at_10_std |
|
value: -4.421548783271478 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 79.73607180360645 |
|
- type: nauc_precision_at_1_max |
|
value: 21.20262368559921 |
|
- type: nauc_precision_at_1_std |
|
value: -19.089796155513238 |
|
- type: nauc_precision_at_20_diff1 |
|
value: 68.87539427047768 |
|
- type: nauc_precision_at_20_max |
|
value: 35.602508001542176 |
|
- type: nauc_precision_at_20_std |
|
value: 3.6366951424017184 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 70.84549884977267 |
|
- type: nauc_precision_at_3_max |
|
value: 27.35862016332144 |
|
- type: nauc_precision_at_3_std |
|
value: -15.255203279510601 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 70.27864341297163 |
|
- type: nauc_precision_at_5_max |
|
value: 30.29162962827962 |
|
- type: nauc_precision_at_5_std |
|
value: -10.193470309556703 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: 65.48397136632475 |
|
- type: nauc_recall_at_1000_max |
|
value: 77.05533391807865 |
|
- type: nauc_recall_at_1000_std |
|
value: 54.14509238038722 |
|
- type: nauc_recall_at_100_diff1 |
|
value: 66.60779785355253 |
|
- type: nauc_recall_at_100_max |
|
value: 54.07639576230805 |
|
- type: nauc_recall_at_100_std |
|
value: 28.071043659958207 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 68.71592258481655 |
|
- type: nauc_recall_at_10_max |
|
value: 31.409440559751168 |
|
- type: nauc_recall_at_10_std |
|
value: -4.421548783271414 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 79.73607180360645 |
|
- type: nauc_recall_at_1_max |
|
value: 21.20262368559921 |
|
- type: nauc_recall_at_1_std |
|
value: -19.089796155513238 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 68.87539427047763 |
|
- type: nauc_recall_at_20_max |
|
value: 35.60250800154217 |
|
- type: nauc_recall_at_20_std |
|
value: 3.6366951424018716 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 70.84549884977265 |
|
- type: nauc_recall_at_3_max |
|
value: 27.358620163321408 |
|
- type: nauc_recall_at_3_std |
|
value: -15.255203279510626 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 70.2786434129717 |
|
- type: nauc_recall_at_5_max |
|
value: 30.291629628279733 |
|
- type: nauc_recall_at_5_std |
|
value: -10.193470309556629 |
|
- type: ndcg_at_1 |
|
value: 67.61 |
|
- type: ndcg_at_10 |
|
value: 78.864 |
|
- type: ndcg_at_100 |
|
value: 80.211 |
|
- type: ndcg_at_1000 |
|
value: 80.50699999999999 |
|
- type: ndcg_at_20 |
|
value: 79.514 |
|
- type: ndcg_at_3 |
|
value: 76.05499999999999 |
|
- type: ndcg_at_5 |
|
value: 77.625 |
|
- type: precision_at_1 |
|
value: 67.61 |
|
- type: precision_at_10 |
|
value: 8.941 |
|
- type: precision_at_100 |
|
value: 0.9570000000000001 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_20 |
|
value: 4.598 |
|
- type: precision_at_3 |
|
value: 27.267000000000003 |
|
- type: precision_at_5 |
|
value: 17.118 |
|
- type: recall_at_1 |
|
value: 67.61 |
|
- type: recall_at_10 |
|
value: 89.41 |
|
- type: recall_at_100 |
|
value: 95.67 |
|
- type: recall_at_1000 |
|
value: 98.02 |
|
- type: recall_at_20 |
|
value: 91.96 |
|
- type: recall_at_3 |
|
value: 81.8 |
|
- type: recall_at_5 |
|
value: 85.59 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB RuBQReranking (default) |
|
revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 |
|
split: test |
|
type: ai-forever/rubq-reranking |
|
metrics: |
|
- type: main_score |
|
value: 70.8676293869892 |
|
- type: map |
|
value: 70.8676293869892 |
|
- type: mrr |
|
value: 76.21519142795738 |
|
- type: nAUC_map_diff1 |
|
value: 37.107477549298316 |
|
- type: nAUC_map_max |
|
value: 24.03175751284917 |
|
- type: nAUC_map_std |
|
value: 10.543266622518289 |
|
- type: nAUC_mrr_diff1 |
|
value: 41.59000224211641 |
|
- type: nAUC_mrr_max |
|
value: 31.06363682531277 |
|
- type: nAUC_mrr_std |
|
value: 14.95221681925582 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB RuBQRetrieval (default) |
|
revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b |
|
split: test |
|
type: ai-forever/rubq-retrieval |
|
metrics: |
|
- type: main_score |
|
value: 66.77499999999999 |
|
- type: map_at_1 |
|
value: 38.964 |
|
- type: map_at_10 |
|
value: 58.679 |
|
- type: map_at_100 |
|
value: 59.74699999999999 |
|
- type: map_at_1000 |
|
value: 59.784000000000006 |
|
- type: map_at_20 |
|
value: 59.386 |
|
- type: map_at_3 |
|
value: 53.183 |
|
- type: map_at_5 |
|
value: 56.619 |
|
- type: mrr_at_1 |
|
value: 56.08747044917257 |
|
- type: mrr_at_10 |
|
value: 67.69477747757892 |
|
- type: mrr_at_100 |
|
value: 68.11028091076142 |
|
- type: mrr_at_1000 |
|
value: 68.12016895906572 |
|
- type: mrr_at_20 |
|
value: 67.99200829920431 |
|
- type: mrr_at_3 |
|
value: 65.40583136327825 |
|
- type: mrr_at_5 |
|
value: 66.86564223798278 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 35.13932221843019 |
|
- type: nauc_map_at_1000_max |
|
value: 31.603311334444573 |
|
- type: nauc_map_at_1000_std |
|
value: -8.046320861408992 |
|
- type: nauc_map_at_100_diff1 |
|
value: 35.10777181986462 |
|
- type: nauc_map_at_100_max |
|
value: 31.603059769116086 |
|
- type: nauc_map_at_100_std |
|
value: -8.027533855390534 |
|
- type: nauc_map_at_10_diff1 |
|
value: 34.864122757362644 |
|
- type: nauc_map_at_10_max |
|
value: 31.625252670171776 |
|
- type: nauc_map_at_10_std |
|
value: -8.334256854154406 |
|
- type: nauc_map_at_1_diff1 |
|
value: 40.90418146524424 |
|
- type: nauc_map_at_1_max |
|
value: 22.269308553048656 |
|
- type: nauc_map_at_1_std |
|
value: -9.89932822257807 |
|
- type: nauc_map_at_20_diff1 |
|
value: 34.88664926631265 |
|
- type: nauc_map_at_20_max |
|
value: 31.60883821879978 |
|
- type: nauc_map_at_20_std |
|
value: -8.095294415067395 |
|
- type: nauc_map_at_3_diff1 |
|
value: 35.13227486507324 |
|
- type: nauc_map_at_3_max |
|
value: 28.53848590790504 |
|
- type: nauc_map_at_3_std |
|
value: -9.223288317647375 |
|
- type: nauc_map_at_5_diff1 |
|
value: 35.0811457266201 |
|
- type: nauc_map_at_5_max |
|
value: 30.904120563551984 |
|
- type: nauc_map_at_5_std |
|
value: -9.190854442617361 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 43.43247399448727 |
|
- type: nauc_mrr_at_1000_max |
|
value: 37.599979998251435 |
|
- type: nauc_mrr_at_1000_std |
|
value: -8.461570912726742 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 43.42803056119293 |
|
- type: nauc_mrr_at_100_max |
|
value: 37.60590141137654 |
|
- type: nauc_mrr_at_100_std |
|
value: -8.456064029069271 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 43.34260974243939 |
|
- type: nauc_mrr_at_10_max |
|
value: 37.7505248362988 |
|
- type: nauc_mrr_at_10_std |
|
value: -8.4789005424329 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 46.8647472051038 |
|
- type: nauc_mrr_at_1_max |
|
value: 34.40507832070825 |
|
- type: nauc_mrr_at_1_std |
|
value: -9.148947481764475 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 43.37024314535158 |
|
- type: nauc_mrr_at_20_max |
|
value: 37.62040185137823 |
|
- type: nauc_mrr_at_20_std |
|
value: -8.497477607790167 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 42.980588675445404 |
|
- type: nauc_mrr_at_3_max |
|
value: 37.43524263010435 |
|
- type: nauc_mrr_at_3_std |
|
value: -8.698337782804687 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 43.224910985482765 |
|
- type: nauc_mrr_at_5_max |
|
value: 38.00633132611649 |
|
- type: nauc_mrr_at_5_std |
|
value: -8.554751807691591 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 36.58393000267959 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 34.491617466873194 |
|
- type: nauc_ndcg_at_1000_std |
|
value: -6.968933918560401 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 35.909285337288004 |
|
- type: nauc_ndcg_at_100_max |
|
value: 34.60361766529284 |
|
- type: nauc_ndcg_at_100_std |
|
value: -6.3241815724593256 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 34.86940448346685 |
|
- type: nauc_ndcg_at_10_max |
|
value: 34.89327996781203 |
|
- type: nauc_ndcg_at_10_std |
|
value: -7.377912505502211 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 47.16372543032823 |
|
- type: nauc_ndcg_at_1_max |
|
value: 34.48620759685232 |
|
- type: nauc_ndcg_at_1_std |
|
value: -8.881483248224074 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 34.901006085701795 |
|
- type: nauc_ndcg_at_20_max |
|
value: 34.766948088105174 |
|
- type: nauc_ndcg_at_20_std |
|
value: -6.680375186500669 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 35.16537335241684 |
|
- type: nauc_ndcg_at_3_max |
|
value: 31.385279916552566 |
|
- type: nauc_ndcg_at_3_std |
|
value: -8.871530629591442 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 35.152664105492605 |
|
- type: nauc_ndcg_at_5_max |
|
value: 33.89982336069226 |
|
- type: nauc_ndcg_at_5_std |
|
value: -8.92795810387048 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: -6.773234121047722 |
|
- type: nauc_precision_at_1000_max |
|
value: 7.0059404092503925 |
|
- type: nauc_precision_at_1000_std |
|
value: 4.757430160226248 |
|
- type: nauc_precision_at_100_diff1 |
|
value: -6.88009476644726 |
|
- type: nauc_precision_at_100_max |
|
value: 10.391099419327492 |
|
- type: nauc_precision_at_100_std |
|
value: 7.203837158689326 |
|
- type: nauc_precision_at_10_diff1 |
|
value: -0.7155570800016817 |
|
- type: nauc_precision_at_10_max |
|
value: 21.06902041338105 |
|
- type: nauc_precision_at_10_std |
|
value: 3.7465404459270815 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 47.16372543032823 |
|
- type: nauc_precision_at_1_max |
|
value: 34.48620759685232 |
|
- type: nauc_precision_at_1_std |
|
value: -8.881483248224074 |
|
- type: nauc_precision_at_20_diff1 |
|
value: -4.695792117927824 |
|
- type: nauc_precision_at_20_max |
|
value: 16.53698826752203 |
|
- type: nauc_precision_at_20_std |
|
value: 6.681726081495262 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 12.446292477522807 |
|
- type: nauc_precision_at_3_max |
|
value: 27.622770072159884 |
|
- type: nauc_precision_at_3_std |
|
value: -2.243774812074271 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 5.851972491534291 |
|
- type: nauc_precision_at_5_max |
|
value: 25.400246002612235 |
|
- type: nauc_precision_at_5_std |
|
value: -0.8059534151280825 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: 17.33619903703495 |
|
- type: nauc_recall_at_1000_max |
|
value: 46.39520954734979 |
|
- type: nauc_recall_at_1000_std |
|
value: 59.70020859630654 |
|
- type: nauc_recall_at_100_diff1 |
|
value: 9.309667388080348 |
|
- type: nauc_recall_at_100_max |
|
value: 35.92482580062717 |
|
- type: nauc_recall_at_100_std |
|
value: 24.021627313676188 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 19.87959406394684 |
|
- type: nauc_recall_at_10_max |
|
value: 35.00740821313158 |
|
- type: nauc_recall_at_10_std |
|
value: -2.6455284599102784 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 40.90418146524424 |
|
- type: nauc_recall_at_1_max |
|
value: 22.269308553048656 |
|
- type: nauc_recall_at_1_std |
|
value: -9.89932822257807 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 15.028975252982061 |
|
- type: nauc_recall_at_20_max |
|
value: 34.901307836728016 |
|
- type: nauc_recall_at_20_std |
|
value: 2.9027647776175494 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 26.13225834790859 |
|
- type: nauc_recall_at_3_max |
|
value: 27.915627935543725 |
|
- type: nauc_recall_at_3_std |
|
value: -8.069525359773976 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 24.184086614024686 |
|
- type: nauc_recall_at_5_max |
|
value: 32.607378848166675 |
|
- type: nauc_recall_at_5_std |
|
value: -7.730984752196379 |
|
- type: ndcg_at_1 |
|
value: 55.969 |
|
- type: ndcg_at_10 |
|
value: 66.77499999999999 |
|
- type: ndcg_at_100 |
|
value: 70.324 |
|
- type: ndcg_at_1000 |
|
value: 70.95700000000001 |
|
- type: ndcg_at_20 |
|
value: 68.613 |
|
- type: ndcg_at_3 |
|
value: 59.256 |
|
- type: ndcg_at_5 |
|
value: 63.223 |
|
- type: precision_at_1 |
|
value: 55.969 |
|
- type: precision_at_10 |
|
value: 13.297999999999998 |
|
- type: precision_at_100 |
|
value: 1.585 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_20 |
|
value: 7.222 |
|
- type: precision_at_3 |
|
value: 32.467 |
|
- type: precision_at_5 |
|
value: 23.073 |
|
- type: recall_at_1 |
|
value: 38.964 |
|
- type: recall_at_10 |
|
value: 81.248 |
|
- type: recall_at_100 |
|
value: 95.124 |
|
- type: recall_at_1000 |
|
value: 99.30600000000001 |
|
- type: recall_at_20 |
|
value: 87.35199999999999 |
|
- type: recall_at_3 |
|
value: 62.785000000000004 |
|
- type: recall_at_5 |
|
value: 71.986 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB RuReviewsClassification (default) |
|
revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a |
|
split: test |
|
type: ai-forever/ru-reviews-classification |
|
metrics: |
|
- type: accuracy |
|
value: 67.958984375 |
|
- type: f1 |
|
value: 67.250877785427 |
|
- type: f1_weighted |
|
value: 67.25215701797296 |
|
- type: main_score |
|
value: 67.958984375 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB RuSTSBenchmarkSTS (default) |
|
revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 |
|
split: test |
|
type: ai-forever/ru-stsbenchmark-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 79.11336124619963 |
|
- type: cosine_spearman |
|
value: 78.69157477180703 |
|
- type: euclidean_pearson |
|
value: 77.84066073571212 |
|
- type: euclidean_spearman |
|
value: 78.69157477180703 |
|
- type: main_score |
|
value: 78.69157477180703 |
|
- type: manhattan_pearson |
|
value: 77.79213012957939 |
|
- type: manhattan_spearman |
|
value: 78.61384378877501 |
|
- type: pearson |
|
value: 79.11336124619963 |
|
- type: spearman |
|
value: 78.69157477180703 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB RuSciBenchGRNTIClassification (default) |
|
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 |
|
split: test |
|
type: ai-forever/ru-scibench-grnti-classification |
|
metrics: |
|
- type: accuracy |
|
value: 59.326171875 |
|
- type: f1 |
|
value: 58.01171745357119 |
|
- type: f1_weighted |
|
value: 58.02106511480968 |
|
- type: main_score |
|
value: 59.326171875 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB RuSciBenchGRNTIClusteringP2P (default) |
|
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 |
|
split: test |
|
type: ai-forever/ru-scibench-grnti-classification |
|
metrics: |
|
- type: main_score |
|
value: 55.46570753380975 |
|
- type: v_measure |
|
value: 55.46570753380975 |
|
- type: v_measure_std |
|
value: 0.9813885872798612 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB RuSciBenchOECDClassification (default) |
|
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 |
|
split: test |
|
type: ai-forever/ru-scibench-oecd-classification |
|
metrics: |
|
- type: accuracy |
|
value: 46.328125 |
|
- type: f1 |
|
value: 44.19158709013339 |
|
- type: f1_weighted |
|
value: 44.190957945676026 |
|
- type: main_score |
|
value: 46.328125 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB RuSciBenchOECDClusteringP2P (default) |
|
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 |
|
split: test |
|
type: ai-forever/ru-scibench-oecd-classification |
|
metrics: |
|
- type: main_score |
|
value: 47.28635342613908 |
|
- type: v_measure |
|
value: 47.28635342613908 |
|
- type: v_measure_std |
|
value: 0.7431017612993989 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: ru |
|
name: MTEB STS22 (ru) |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 63.10139371129796 |
|
- type: cosine_spearman |
|
value: 67.06445400504978 |
|
- type: euclidean_pearson |
|
value: 62.74563386470613 |
|
- type: euclidean_spearman |
|
value: 67.06445400504978 |
|
- type: main_score |
|
value: 67.06445400504978 |
|
- type: manhattan_pearson |
|
value: 62.540465664732395 |
|
- type: manhattan_spearman |
|
value: 66.65899492022648 |
|
- type: pearson |
|
value: 63.10139371129796 |
|
- type: spearman |
|
value: 67.06445400504978 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SensitiveTopicsClassification (default) |
|
revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 |
|
split: test |
|
type: ai-forever/sensitive-topics-classification |
|
metrics: |
|
- type: accuracy |
|
value: 33.0712890625 |
|
- type: f1 |
|
value: 38.063573562290024 |
|
- type: lrap |
|
value: 49.586995442707696 |
|
- type: main_score |
|
value: 33.0712890625 |
|
task: |
|
type: MultilabelClassification |
|
- dataset: |
|
config: default |
|
name: MTEB TERRa (default) |
|
revision: 7b58f24536063837d644aab9a023c62199b2a612 |
|
split: dev |
|
type: ai-forever/terra-pairclassification |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 61.563517915309454 |
|
- type: cosine_accuracy_threshold |
|
value: 75.3734290599823 |
|
- type: cosine_ap |
|
value: 60.78861909325018 |
|
- type: cosine_f1 |
|
value: 67.25663716814158 |
|
- type: cosine_f1_threshold |
|
value: 54.05237674713135 |
|
- type: cosine_precision |
|
value: 50.836120401337794 |
|
- type: cosine_recall |
|
value: 99.34640522875817 |
|
- type: dot_accuracy |
|
value: 61.563517915309454 |
|
- type: dot_accuracy_threshold |
|
value: 75.37343502044678 |
|
- type: dot_ap |
|
value: 60.78861909325018 |
|
- type: dot_f1 |
|
value: 67.25663716814158 |
|
- type: dot_f1_threshold |
|
value: 54.05237674713135 |
|
- type: dot_precision |
|
value: 50.836120401337794 |
|
- type: dot_recall |
|
value: 99.34640522875817 |
|
- type: euclidean_accuracy |
|
value: 61.563517915309454 |
|
- type: euclidean_accuracy_threshold |
|
value: 70.18057107925415 |
|
- type: euclidean_ap |
|
value: 60.78861909325018 |
|
- type: euclidean_f1 |
|
value: 67.25663716814158 |
|
- type: euclidean_f1_threshold |
|
value: 95.86195945739746 |
|
- type: euclidean_precision |
|
value: 50.836120401337794 |
|
- type: euclidean_recall |
|
value: 99.34640522875817 |
|
- type: main_score |
|
value: 60.78861909325018 |
|
- type: manhattan_accuracy |
|
value: 60.91205211726385 |
|
- type: manhattan_accuracy_threshold |
|
value: 1813.1645202636719 |
|
- type: manhattan_ap |
|
value: 60.478709337038936 |
|
- type: manhattan_f1 |
|
value: 67.10816777041943 |
|
- type: manhattan_f1_threshold |
|
value: 2475.027275085449 |
|
- type: manhattan_precision |
|
value: 50.66666666666667 |
|
- type: manhattan_recall |
|
value: 99.34640522875817 |
|
- type: max_ap |
|
value: 60.78861909325018 |
|
- type: max_f1 |
|
value: 67.25663716814158 |
|
- type: max_precision |
|
value: 50.836120401337794 |
|
- type: max_recall |
|
value: 99.34640522875817 |
|
- type: similarity_accuracy |
|
value: 61.563517915309454 |
|
- type: similarity_accuracy_threshold |
|
value: 75.3734290599823 |
|
- type: similarity_ap |
|
value: 60.78861909325018 |
|
- type: similarity_f1 |
|
value: 67.25663716814158 |
|
- type: similarity_f1_threshold |
|
value: 54.05237674713135 |
|
- type: similarity_precision |
|
value: 50.836120401337794 |
|
- type: similarity_recall |
|
value: 99.34640522875817 |
|
task: |
|
type: PairClassification |
|
license: mit |
|
language: |
|
- ru |
|
- en |
|
tags: |
|
- mteb |
|
- transformers |
|
- sentence-transformers |
|
base_model: ai-forever/ruRoberta-large |
|
--- |
|
|
|
# Model Card for ru-en-RoSBERTa |
|
|
|
The ru-en-RoSBERTa is a general text embedding model for Russian. The model is based on [ruRoBERTa](https://huggingface.co/ai-forever/ruRoberta-large) and fine-tuned with ~4M pairs of supervised, synthetic and unsupervised data in Russian and English. Tokenizer supports some English tokens from [RoBERTa](https://huggingface.co/FacebookAI/roberta-large) tokenizer. |
|
|
|
For more model details please refer to our [article](https://arxiv.org/abs/2408.12503). |
|
|
|
## Usage |
|
|
|
The model can be used as is with prefixes. It is recommended to use CLS pooling. The choice of prefix and pooling depends on the task. |
|
|
|
We use the following basic rules to choose a prefix: |
|
- `"search_query: "` and `"search_document: "` prefixes are for answer or relevant paragraph retrieval |
|
- `"classification: "` prefix is for symmetric paraphrasing related tasks (STS, NLI, Bitext Mining) |
|
- `"clustering: "` prefix is for any tasks that rely on thematic features (topic classification, title-body retrieval) |
|
|
|
To better tailor the model to your needs, you can fine-tune it with relevant high-quality Russian and English datasets. |
|
|
|
Below are examples of texts encoding using the Transformers and SentenceTransformers libraries. |
|
|
|
### Transformers |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def pool(hidden_state, mask, pooling_method="cls"): |
|
if pooling_method == "mean": |
|
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1) |
|
d = mask.sum(axis=1, keepdim=True).float() |
|
return s / d |
|
elif pooling_method == "cls": |
|
return hidden_state[:, 0] |
|
|
|
inputs = [ |
|
# |
|
"classification: Он нам и <unk> не нужон ваш Интернет!", |
|
"clustering: В Ярославской области разрешили работу бань, но без посетителей", |
|
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", |
|
|
|
# |
|
"classification: What a time to be alive!", |
|
"clustering: Ярославским баням разрешили работать без посетителей", |
|
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ai-forever/ru-en-RoSBERTa") |
|
model = AutoModel.from_pretrained("ai-forever/ru-en-RoSBERTa") |
|
|
|
tokenized_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**tokenized_inputs) |
|
|
|
embeddings = pool( |
|
outputs.last_hidden_state, |
|
tokenized_inputs["attention_mask"], |
|
pooling_method="cls" # or try "mean" |
|
) |
|
|
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
|
|
sim_scores = embeddings[:3] @ embeddings[3:].T |
|
print(sim_scores.diag().tolist()) |
|
# [0.4796873927116394, 0.9409002065658569, 0.7761015892028809] |
|
``` |
|
|
|
### SentenceTransformers |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
inputs = [ |
|
# |
|
"classification: Он нам и <unk> не нужон ваш Интернет!", |
|
"clustering: В Ярославской области разрешили работу бань, но без посетителей", |
|
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", |
|
|
|
# |
|
"classification: What a time to be alive!", |
|
"clustering: Ярославским баням разрешили работать без посетителей", |
|
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", |
|
] |
|
|
|
# loads model with CLS pooling |
|
model = SentenceTransformer("ai-forever/ru-en-RoSBERTa") |
|
|
|
# embeddings are normalized by default |
|
embeddings = model.encode(inputs, convert_to_tensor=True) |
|
|
|
sim_scores = embeddings[:3] @ embeddings[3:].T |
|
print(sim_scores.diag().tolist()) |
|
# [0.47968706488609314, 0.940900444984436, 0.7761018872261047] |
|
``` |
|
|
|
or using prompts (sentence-transformers>=2.4.0): |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# loads model with CLS pooling |
|
model = SentenceTransformer("ai-forever/ru-en-RoSBERTa") |
|
|
|
classification = model.encode(["Он нам и <unk> не нужон ваш Интернет!", "What a time to be alive!"], prompt_name="classification") |
|
print(classification[0] @ classification[1].T) # 0.47968706488609314 |
|
|
|
clustering = model.encode(["В Ярославской области разрешили работу бань, но без посетителей", "Ярославским баням разрешили работать без посетителей"], prompt_name="clustering") |
|
print(clustering[0] @ clustering[1].T) # 0.940900444984436 |
|
|
|
query_embedding = model.encode("Сколько программистов нужно, чтобы вкрутить лампочку?", prompt_name="search_query") |
|
document_embedding = model.encode("Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", prompt_name="search_document") |
|
print(query_embedding @ document_embedding.T) # 0.7761018872261047 |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@misc{snegirev2024russianfocusedembeddersexplorationrumteb, |
|
title={The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design}, |
|
author={Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov}, |
|
year={2024}, |
|
eprint={2408.12503}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2408.12503}, |
|
} |
|
``` |
|
|
|
## Limitations |
|
|
|
The model is designed to process texts in Russian, the quality in English is unknown. Maximum input text length is limited to 512 tokens. |
|
|