metadata
language: hi
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- wav2vec2
- asr
license: apache-2.0
IndicWav2Vec-Hindi
This is a Wav2Vec2 style ASR model trained in fairseq and ported to Hugging Face.
More details on datasets, training-setup and conversion to HuggingFace format can be found in the IndicWav2Vec repo.
Note: This model doesn't support inference with Language Model.
Script to Run Inference
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
DEVICE_ID = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_ID = "ai4bharat/indicwav2vec-hindi"
sample = next(iter(load_dataset("common_voice", "hi", split="test", streaming=True)))
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48000, 16000).numpy()
model = AutoModelForCTC.from_pretrained(MODEL_ID).to(DEVICE_ID)
processor = AutoProcessor.from_pretrained(MODEL_ID)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values.to(DEVICE_ID)).logits.cpu()
prediction_ids = torch.argmax(logits, dim=-1)
output_str = processor.batch_decode(prediction_ids)[0]
print(f"Greedy Decoding: {output_str}")
About AI4Bharat
- Website: https://ai4bharat.org/
- Code: https://github.com/AI4Bharat
- HuggingFace: https://huggingface.co/ai4bharat