whisper-small-dar / README.md
akhooli's picture
End of training
141d84d verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-small-dar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_17_0 ar
          type: mozilla-foundation/common_voice_17_0
          config: ar
          split: None
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 0.3367421033522934

whisper-small-dar

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_17_0 ar dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1813
  • Wer: 0.3367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.303 0.5935 200 0.2434 0.4226
0.2 1.1869 400 0.2035 0.3914
0.1633 1.7804 600 0.1876 0.3469
0.106 2.3739 800 0.1850 0.3488
0.1005 2.9674 1000 0.1813 0.3367

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0