group1_non_all_zero

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7437
  • Precision: 0.0149
  • Recall: 0.1076
  • F1: 0.0262
  • Accuracy: 0.9260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 15 1.0746 0.0007 0.0633 0.0013 0.4145
No log 2.0 30 0.8623 0.0023 0.1139 0.0045 0.6250
No log 3.0 45 0.7242 0.0024 0.0696 0.0046 0.7334
No log 4.0 60 0.6181 0.0037 0.0696 0.0070 0.8030
No log 5.0 75 0.6489 0.0090 0.1329 0.0169 0.8282
No log 6.0 90 0.6538 0.0091 0.1266 0.0170 0.8445
No log 7.0 105 0.6189 0.0103 0.1013 0.0188 0.8893
No log 8.0 120 0.6328 0.0101 0.1013 0.0183 0.8917
No log 9.0 135 0.6561 0.0119 0.1076 0.0215 0.9099
No log 10.0 150 0.6537 0.0152 0.1139 0.0267 0.9265
No log 11.0 165 0.6939 0.0182 0.1139 0.0314 0.9385
No log 12.0 180 0.7481 0.0113 0.0949 0.0203 0.9103
No log 13.0 195 0.7242 0.0150 0.1203 0.0267 0.9209
No log 14.0 210 0.7553 0.0140 0.1013 0.0247 0.9229
No log 15.0 225 0.7437 0.0149 0.1076 0.0262 0.9260

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.