group4_non_all_zero

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2820
  • Precision: 0.0006
  • Recall: 0.08
  • F1: 0.0012
  • Accuracy: 0.4380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 5 2.1670 0.0 0.0 0.0 0.0084
No log 2.0 10 2.3289 0.0 0.0 0.0 0.0078
No log 3.0 15 2.3316 0.0 0.0 0.0 0.0078
No log 4.0 20 2.0441 0.0 0.0 0.0 0.0078
No log 5.0 25 2.4322 0.0 0.0 0.0 0.0078
No log 6.0 30 1.7898 0.0 0.0 0.0 0.0106
No log 7.0 35 1.8590 0.0002 0.0133 0.0004 0.0104
No log 8.0 40 1.7022 0.0002 0.0133 0.0004 0.0250
No log 9.0 45 1.5775 0.0004 0.04 0.0007 0.1004
No log 10.0 50 1.4837 0.0006 0.08 0.0011 0.1939
No log 11.0 55 1.3180 0.0004 0.0533 0.0008 0.3309
No log 12.0 60 1.3418 0.0005 0.0667 0.0011 0.3799
No log 13.0 65 1.3140 0.0005 0.0667 0.0010 0.4117
No log 14.0 70 1.3444 0.0004 0.0533 0.0008 0.4048
No log 15.0 75 1.2820 0.0006 0.08 0.0012 0.4380

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.