qwenvl-2B-cadica-stenosis-classify-lora

This model is a fine-tuned version of AdaptLLM/biomed-Qwen2-VL-2B-Instruct on the CADICA狹窄分析選擇題(TRAIN) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7947
  • Num Input Tokens Seen: 11152104

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.9039 0.1396 50 0.9039 779728
0.9033 0.2792 100 0.9009 1559632
0.9001 0.4188 150 0.8988 2339368
0.902 0.5585 200 0.9004 3119064
0.8933 0.6981 250 0.9052 3898784
0.897 0.8377 300 0.9004 4678472
0.8997 0.9773 350 0.9016 5458104
0.9109 1.1145 400 0.8960 6224248
0.8127 1.2541 450 0.8822 7003904
0.8198 1.3937 500 0.8460 7783528
0.832 1.5333 550 0.8188 8563264
0.786 1.6729 600 0.8021 9343120
0.8312 1.8126 650 0.7986 10122936
0.7797 1.9522 700 0.7947 10902632

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
2.21B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ben81828/qwenvl-2B-cadica-stenosis-classify-lora

Base model

Qwen/Qwen2-VL-2B
Adapter
(7)
this model