Update Log
- 2024.02.19: Initial Test version Release of SOLAR-KOEN-10.8B
SOLAR-KOEN-10.8B ⭐🇰🇷🇺🇸
Solar-KoEn represents an advanced iteration of the upstage/SOLAR-10.7B-v1.0 model, featuring an expanded vocabulary and the inclusion of a Korean+English corpus for enhanced pretraining.
Model Details
Model Developers: Junbum Lee (Beomi) & Taekyoon Choi (Taekyoon)
Variations: Solar-KoEn is available with one parameter sizes — 10.8B with Continual Pretrained version.
Input: The model accepts only text input.
Output: The model produces text output exclusively.
Model Architecture:
SOLAR-KOEN-10.8B is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
Training Data | Parameters | Content Length | GQA | Tokens | Learning Rate | |
---|---|---|---|---|---|---|
SOLAR-KOEN-10.8B | A curated mix of Korean+English Corpora | 10.8B | 4k | O | >60B* | 5e-5 |
Vocab Expansion
Model Name | Vocabulary Size | Description |
---|---|---|
Original Solar | 32000 | Sentencepiece BPE |
Expanded SOLAR-KOEN-10.8B | 46336 | Sentencepiece BPE. Added Korean vocab and merges |
Tokenizing "안녕하세요, 오늘은 날씨가 좋네요."
- SOLAR-10.7B: 26 tokens
- SOLAR-KO-10.7b: 10 tokens
Model | Tokens |
---|---|
SOLAR-10.7B | ['▁', '안', '<0xEB>', '<0x85>', '<0x95>', '하', '세', '요', ',', '▁', '오', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '날', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '좋', '네', '요', '.'] |
SOLAR-KOEN-10.8B | ['▁안', '녕', '하세요', ',', '▁오늘', '은', '▁날', '씨가', '▁좋네요', '.'] |
Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"
- SOLAR-10.7B: 22 tokens
- SOLAR-KO-10.7b: 22 tokens
Model | Tokens |
---|---|
SOLAR-10.7B | ['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!'] |
SOLAR-KOEN-10.8B | ['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!'] |
LICENSE
CC-BY-NC-SA-4.0
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
- 5-shot scores
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
klue_mrc | 0 | exact | 50.2140 | ||
f1 | 54.0330 | ||||
HasAns_exact | 73.1786 | ||||
HasAns_f1 | 78.7442 | ||||
best_exact | 56.9594 | ||||
best_f1 | 60.3743 | ||||
korquad | 1 | exact_match | 81.0530 | ||
f1 | 87.6418 | ||||
klue_nli | 0 | acc | 0.4540 | ± | 0.0091 |
klue_sts | 0 | acc | 0.3410 | ± | 0.0208 |
f1 | 0.4896 | ± | 0.0237 | ||
klue_ynat | 0 | acc | 0.6308 | ± | 0.0051 |
macro_f1 | 0.6086 | ± | 0.0057 | ||
kobest_boolq | 0 | acc | 0.8711 | ± | 0.0089 |
macro_f1 | 0.8705 | ± | 0.0090 | ||
kobest_copa | 0 | acc | 0.8500 | ± | 0.0113 |
macro_f1 | 0.8498 | ± | 0.0113 | ||
kobest_hellaswag | 0 | acc | 0.5180 | ± | 0.0224 |
acc_norm | 0.6180 | ± | 0.0218 | ||
macro_f1 | 0.5138 | ± | 0.0224 | ||
kobest_sentineg | 0 | acc | 0.9723 | ± | 0.0082 |
macro_f1 | 0.9723 | ± | 0.0083 | ||
kobest_wic | 0 | acc | 0.5825 | ± | 0.0139 |
macro_f1 | 0.4952 | ± | 0.0140 | ||
kohatespeech_apeach | 0 | acc | 0.7034 | ± | 0.0074 |
macro_f1 | 0.7033 | ± | 0.0074 | ||
nsmc | 0 | acc | 0.8738 | ± | 0.0015 |
pawsx_ko | 0 | acc | 0.5510 | ± | 0.0111 |
kmmlu_direct | 0 | exact_match | 0.4220 | ± | 0.0909 |
Citation
@misc {solar_koen_junbum_taekyoon_2024,
author = { {L. Junbum, Taekyoon Choi} },
title = { SOLAR-KOEN-10.8B },
year = 2024,
url = { https://huggingface.co/beomi/SOLAR-KOEN-10.8B },
publisher = { Hugging Face }
}
Acknowledgements
- Training support was provided by the TPU Research Cloud program.
- Downloads last month
- 1,828