See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-14m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- naver-news-summarization-ko_train_data.json
ds_type: json
path: /workspace/input_data/naver-news-summarization-ko_train_data.json
type:
field_input: document
field_instruction: title
field_output: summary
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 2
hub_model_id: besimray/miner1_8f97fcaa-a2e2-4f79-8ff1-0ca9a91cd08f_1731070538
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/naver-news-summarization-ko_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-08T12:55:38.460815'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 8f97fcaa-a2e2-4f79-8ff1-0ca9a91cd08f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner1_8f97fcaa-a2e2-4f79-8ff1-0ca9a91cd08f_1731070538
This model is a fine-tuned version of EleutherAI/pythia-14m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.8992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
17.1378 | 0.0003 | 1 | 35.9231 |
317.0339 | 0.0015 | 5 | 25.7995 |
16.75 | 0.0031 | 10 | 7.7681 |
24.2415 | 0.0046 | 15 | 8.8992 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 0
Model tree for besimray/miner1_8f97fcaa-a2e2-4f79-8ff1-0ca9a91cd08f_1731070538
Base model
EleutherAI/pythia-14m