metadata
library_name: peft
base_model: bigscience/bloomz-3b
What it is
The model generates funky marketing emails, see example below. Implementation: A QLORA fine tuning over a bigscience/bloomz-3b, utilizing the FourthBrainGenAI/MarketMail-AI dataset with 17 rows.
Inference example
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "borislitvak/boris-bloomz-peft-marketing"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
from IPython.display import display, Markdown
def make_inference(product, description):
batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=200)
# for Jupyter. If serving in regular Python, remove display/Markdown
display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
your_product_name_here = ""
your_product_description_here = ""
make_inference(your_product_name_here, your_product_description_here)