speaker-segmentation-emotion
This model is a fine-tuned version of pyannote/segmentation-3.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4349
- Model Preparation Time: 0.0045
- Der: 0.2041
- False Alarm: 0.0709
- Missed Detection: 0.1190
- Confusion: 0.0141
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 512
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.5336 | 1.0 | 2616 | 0.5341 | 0.0045 | 0.2408 | 0.0777 | 0.1372 | 0.0259 |
0.5071 | 2.0 | 5232 | 0.5025 | 0.0045 | 0.2301 | 0.0716 | 0.1374 | 0.0211 |
0.497 | 3.0 | 7848 | 0.4931 | 0.0045 | 0.2269 | 0.0679 | 0.1384 | 0.0206 |
0.4837 | 4.0 | 10464 | 0.4856 | 0.0045 | 0.2247 | 0.0637 | 0.1412 | 0.0197 |
0.471 | 5.0 | 13080 | 0.4726 | 0.0045 | 0.2198 | 0.0648 | 0.1373 | 0.0177 |
0.4622 | 6.0 | 15696 | 0.4641 | 0.0045 | 0.2172 | 0.0668 | 0.1347 | 0.0157 |
0.459 | 7.0 | 18312 | 0.4601 | 0.0045 | 0.2147 | 0.0653 | 0.1331 | 0.0163 |
0.4574 | 8.0 | 20928 | 0.4571 | 0.0045 | 0.2145 | 0.0645 | 0.1338 | 0.0162 |
0.4672 | 9.0 | 23544 | 0.4613 | 0.0045 | 0.2147 | 0.0687 | 0.1290 | 0.0170 |
0.4564 | 10.0 | 26160 | 0.4630 | 0.0045 | 0.2165 | 0.0684 | 0.1306 | 0.0174 |
0.4554 | 11.0 | 28776 | 0.4574 | 0.0045 | 0.2140 | 0.0676 | 0.1292 | 0.0172 |
0.4602 | 12.0 | 31392 | 0.4638 | 0.0045 | 0.2159 | 0.0698 | 0.1276 | 0.0185 |
0.4489 | 13.0 | 34008 | 0.4539 | 0.0045 | 0.2124 | 0.0666 | 0.1293 | 0.0165 |
0.4507 | 14.0 | 36624 | 0.4554 | 0.0045 | 0.2132 | 0.0695 | 0.1267 | 0.0170 |
0.4503 | 15.0 | 39240 | 0.4536 | 0.0045 | 0.2119 | 0.0765 | 0.1182 | 0.0172 |
0.4471 | 16.0 | 41856 | 0.4472 | 0.0045 | 0.2099 | 0.0698 | 0.1242 | 0.0159 |
0.444 | 17.0 | 44472 | 0.4484 | 0.0045 | 0.2095 | 0.0682 | 0.1256 | 0.0157 |
0.4423 | 18.0 | 47088 | 0.4413 | 0.0045 | 0.2074 | 0.0667 | 0.1262 | 0.0145 |
0.4327 | 19.0 | 49704 | 0.4395 | 0.0045 | 0.2061 | 0.0690 | 0.1229 | 0.0142 |
0.4357 | 20.0 | 52320 | 0.4375 | 0.0045 | 0.2056 | 0.0689 | 0.1226 | 0.0141 |
0.4247 | 21.0 | 54936 | 0.4344 | 0.0045 | 0.2039 | 0.0702 | 0.1202 | 0.0134 |
0.4334 | 22.0 | 57552 | 0.4378 | 0.0045 | 0.2055 | 0.0700 | 0.1208 | 0.0147 |
0.4369 | 23.0 | 60168 | 0.4399 | 0.0045 | 0.2061 | 0.0702 | 0.1203 | 0.0157 |
0.4341 | 24.0 | 62784 | 0.4376 | 0.0045 | 0.2054 | 0.0709 | 0.1197 | 0.0148 |
0.428 | 25.0 | 65400 | 0.4366 | 0.0045 | 0.2046 | 0.0693 | 0.1211 | 0.0141 |
0.4324 | 26.0 | 68016 | 0.4360 | 0.0045 | 0.2047 | 0.0688 | 0.1216 | 0.0142 |
0.4319 | 27.0 | 70632 | 0.4358 | 0.0045 | 0.2045 | 0.0718 | 0.1183 | 0.0144 |
0.4317 | 28.0 | 73248 | 0.4351 | 0.0045 | 0.2042 | 0.0701 | 0.1200 | 0.0141 |
0.4303 | 29.0 | 75864 | 0.4348 | 0.0045 | 0.2041 | 0.0709 | 0.1191 | 0.0141 |
0.428 | 30.0 | 78480 | 0.4349 | 0.0045 | 0.2041 | 0.0709 | 0.1190 | 0.0141 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 89
Model tree for cadazar/speaker-segmentation-emotion
Base model
pyannote/segmentation-3.0