metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:505654
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
module: stationery & printed material & services group: stationery &
printed material & services supergroup: stationery & printed material &
services example descriptions: munchkin crayons hween printedsheet mask 2
pk printed tape tour os silver butterfly relax with art m ab
hardbacknotebook stickers p val youmeyou text heat w mandalorian a 5 nbook
nediun bubble envelopes 6 pk whs pastel expan org p poll decoration 1
airtricity payasyoug
sentences:
- 'retailer: groveify description: rainbow magicbooks'
- 'retailer: crispcorner description: glazed k kreme'
- 'retailer: vitalveg description: may held aop fl'
- source_sentence: >-
module: flavoured drinks carbonated cola group: drinks flavoured rtd
supergroup: beverages non alcoholic example descriptions: cola w xcoke
zero 15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry
can 009500 pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml
diet coke nin 15 cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero
coke 250 mlreg pmpg 5 p
sentences:
- 'retailer: vitalveg description: coke 240 k'
- 'retailer: vitalveg description: tala silicone icing'
- 'retailer: bountify description: pah antibac wood 10 l'
- source_sentence: >-
module: skin conditioning moisturising group: skin conditioning
moisturising supergroup: personal care example descriptions: ss crmy bdy
oil dove dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo
dry skn gel garnier milk bld lpblm orgnl vit a serum nv cr gran oh olay
bright eye crm bio oil 2 x 200 ml nvfc srm q 10 prlbst sf aa nt crm 50
aveeno cream 500 ml
sentences:
- 'retailer: wilko description: radiator m key'
- 'retailer: nourify description: okf lprp tblpbl un'
- 'retailer: crispcorner description: 065 each fredflo 60 biodegradable'
- source_sentence: >-
module: cakes gateaux ambient group: cakes gateaux ambient supergroup:
food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban
lunchbx js angel slices x 6 spk mr kipling frosty fancies plantastic
cherry choc fl hr kipling angel slices 10 pk brompton choc brownies
jschocchunknuffin loaded drip cake hobnbchoc fjack oreo muffins x 2 mr
kipling victoria slices 6 pack mk kip choc rdsugar m the best brownies
odby 5 choc mini
sentences:
- 'retailer: flavorful description: nr choc brownies'
- 'retailer: producify description: dettol srfc wipe'
- 'retailer: noshify description: garden wheels plate'
- source_sentence: >-
module: bread ambient group: bread ambient supergroup: food ambient
example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis
snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med
wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25
cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl
pataks pappadums 6 pk warb so bth disc pappajuns
sentences:
- 'retailer: greenly description: pomodoro sauce'
- 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g'
- 'retailer: vitalveg description: ready to eat prun'
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: sentence transformers/all mpnet base v2
type: sentence-transformers/all-mpnet-base-v2
metrics:
- type: cosine_accuracy@1
value: 0.498812351543943
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6342042755344418
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7102137767220903
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7838479809976246
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.498812351543943
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21140142517814728
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14204275534441804
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07838479809976245
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.498812351543943
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6342042755344418
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7102137767220903
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7838479809976246
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6324346540369431
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5850111224220487
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5910447073012788
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred")
# Run inference
sentences = [
'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns',
'retailer: crispcorner description: kingsmill 5050 medius bread 800 g',
'retailer: vitalveg description: ready to eat prun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
sentence-transformers/all-mpnet-base-v2
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4988 |
cosine_accuracy@3 | 0.6342 |
cosine_accuracy@5 | 0.7102 |
cosine_accuracy@10 | 0.7838 |
cosine_precision@1 | 0.4988 |
cosine_precision@3 | 0.2114 |
cosine_precision@5 | 0.142 |
cosine_precision@10 | 0.0784 |
cosine_recall@1 | 0.4988 |
cosine_recall@3 | 0.6342 |
cosine_recall@5 | 0.7102 |
cosine_recall@10 | 0.7838 |
cosine_ndcg@10 | 0.6324 |
cosine_mrr@10 | 0.585 |
cosine_map@100 | 0.591 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 505,654 training samples
- Columns:
query
andfull_doc
- Approximate statistics based on the first 1000 samples:
query full_doc type string string details - min: 10 tokens
- mean: 14.8 tokens
- max: 23 tokens
- min: 83 tokens
- mean: 115.71 tokens
- max: 176 tokens
- Samples:
query full_doc retailer: vitalveg description: twin xira
module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g
retailer: freshnosh description: mab pop sockt
module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c
retailer: nourify description: bts prwn ckt swch
module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
---|---|---|---|
0.0016 | 100 | 1.6195 | 0.2567 |
0.0032 | 200 | 1.47 | 0.3166 |
0.0047 | 300 | 1.2703 | 0.3814 |
0.0063 | 400 | 1.1335 | 0.4495 |
0.0079 | 500 | 0.9942 | 0.4827 |
0.0095 | 600 | 0.9004 | 0.5058 |
0.0111 | 700 | 0.8838 | 0.5069 |
0.0016 | 100 | 0.951 | 0.5197 |
0.0032 | 200 | 0.9597 | 0.5323 |
0.0047 | 300 | 0.9241 | 0.5406 |
0.0063 | 400 | 0.8225 | 0.5484 |
0.0079 | 500 | 0.7961 | 0.5568 |
0.0095 | 600 | 0.7536 | 0.5621 |
0.0111 | 700 | 0.7387 | 0.5623 |
0.0127 | 800 | 0.7716 | 0.5746 |
0.0142 | 900 | 0.7921 | 0.5651 |
0.0158 | 1000 | 0.7744 | 0.5707 |
0.0174 | 1100 | 0.8021 | 0.5770 |
0.0190 | 1200 | 0.732 | 0.5756 |
0.0206 | 1300 | 0.764 | 0.5798 |
0.0221 | 1400 | 0.7726 | 0.5873 |
0.0237 | 1500 | 0.6676 | 0.5921 |
0.0253 | 1600 | 0.6851 | 0.5841 |
0.0269 | 1700 | 0.7404 | 0.5964 |
0.0285 | 1800 | 0.6798 | 0.5928 |
0.0301 | 1900 | 0.6485 | 0.5753 |
0.0316 | 2000 | 0.649 | 0.5839 |
0.0332 | 2100 | 0.6739 | 0.5891 |
0.0348 | 2200 | 0.6616 | 0.6045 |
0.0364 | 2300 | 0.6287 | 0.5863 |
0.0380 | 2400 | 0.6602 | 0.5898 |
0.0396 | 2500 | 0.5667 | 0.5910 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu124
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}