clapAI/modernBERT-large-multilingual-sentiment

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4399
  • F1: 0.8128
  • Precision: 0.8125
  • Recall: 0.8133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2048
  • total_eval_batch_size: 1024
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
0.8799 1.0 1537 0.4329 0.8050 0.8079 0.8037
0.7674 2.0 3074 0.4197 0.8125 0.8125 0.8125
0.6427 3.0 4611 0.4399 0.8128 0.8125 0.8133
0.4206 4.0 6148 0.5581 0.8073 0.8068 0.8078
0.2322 5.0 7685 0.7490 0.8012 0.8011 0.8014

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
396M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for clapAI/modernBERT-large-multilingual-sentiment

Finetuned
(24)
this model