Push model using huggingface_hub.
#1
by
danielkorat
- opened
- 1_Pooling/config.json +3 -1
- README.md +170 -45
- config.json +2 -2
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +2 -2
- special_tokens_map.json +35 -5
- tokenizer_config.json +1 -1
1_Pooling/config.json
CHANGED
@@ -3,5 +3,7 @@
|
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
7 |
}
|
|
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
}
|
README.md
CHANGED
@@ -1,81 +1,206 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
4 |
- setfit
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [SetFit
|
13 |
|
14 |
-
|
|
|
|
|
15 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
16 |
|
17 |
-
##
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
from setfit import SetFitModel, SetFitTrainer
|
24 |
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
trainer = SetFitTrainer(model=model, train_dataset=train_ds, eval_dataset=test_ds)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
```bash
|
47 |
-
|
48 |
```
|
49 |
|
50 |
-
|
51 |
|
52 |
```python
|
53 |
from setfit import SetFitModel
|
54 |
|
55 |
-
# Download from
|
56 |
-
model = SetFitModel.from_pretrained("
|
57 |
# Run inference
|
58 |
-
preds = model(
|
59 |
```
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
```bibtex
|
71 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
72 |
-
doi = {10.48550/ARXIV.2209.11055},
|
73 |
-
url = {https://arxiv.org/abs/2209.11055},
|
74 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
75 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
76 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
77 |
-
publisher = {arXiv},
|
78 |
-
year = {2022},
|
79 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
80 |
}
|
81 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: setfit
|
3 |
tags:
|
4 |
- setfit
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
datasets:
|
9 |
+
- SetFit/sst2
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
widget:
|
13 |
+
- text: a noble failure .
|
14 |
+
- text: ms. seigner and mr. serrault bring fresh , unforced naturalism to their characters
|
15 |
+
.
|
16 |
+
- text: 'nothing can detract from the affection of that moral favorite : friends will
|
17 |
+
be friends through thick and thin .'
|
18 |
+
- text: confuses its message with an ultimate desire to please , and contorting itself
|
19 |
+
into an idea of expectation is the last thing any of these three actresses , nor
|
20 |
+
their characters , deserve .
|
21 |
+
- text: despite its promising cast of characters , big trouble remains a loosely tied
|
22 |
+
series of vignettes which only prove that ` zany ' does n't necessarily mean `
|
23 |
+
funny . '
|
24 |
pipeline_tag: text-classification
|
25 |
+
inference: true
|
26 |
+
base_model: BAAI/bge-small-en-v1.5
|
27 |
+
model-index:
|
28 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-classification
|
32 |
+
name: Text Classification
|
33 |
+
dataset:
|
34 |
+
name: SetFit/sst2
|
35 |
+
type: SetFit/sst2
|
36 |
+
split: test
|
37 |
+
metrics:
|
38 |
+
- type: accuracy
|
39 |
+
value: 0.8841743119266054
|
40 |
+
name: Accuracy
|
41 |
---
|
42 |
|
43 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
44 |
|
45 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SetFit/sst2](https://huggingface.co/datasets/SetFit/sst2) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
46 |
|
47 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
48 |
+
|
49 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
50 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
51 |
|
52 |
+
## Model Details
|
53 |
|
54 |
+
### Model Description
|
55 |
+
- **Model Type:** SetFit
|
56 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
57 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
58 |
+
- **Maximum Sequence Length:** 512 tokens
|
59 |
+
- **Number of Classes:** 2 classes
|
60 |
+
- **Training Dataset:** [SetFit/sst2](https://huggingface.co/datasets/SetFit/sst2)
|
61 |
+
<!-- - **Language:** Unknown -->
|
62 |
+
<!-- - **License:** Unknown -->
|
63 |
|
64 |
+
### Model Sources
|
|
|
65 |
|
66 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
67 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
68 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
69 |
|
70 |
+
### Model Labels
|
71 |
+
| Label | Examples |
|
72 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
73 |
+
| 1 | <ul><li>'a stirring , funny and finally transporting re-imagining of beauty and the beast and 1930s horror films'</li><li>'this is a visually stunning rumination on love , memory , history and the war between art and commerce .'</li><li>"jonathan parker 's bartleby should have been the be-all-end-all of the modern-office anomie films ."</li></ul> |
|
74 |
+
| 0 | <ul><li>'apparently reassembled from the cutting-room floor of any given daytime soap .'</li><li>"they presume their audience wo n't sit still for a sociology lesson , however entertainingly presented , so they trot out the conventional science-fiction elements of bug-eyed monsters and futuristic women in skimpy clothes ."</li><li>'a fan film that for the uninitiated plays better on video with the sound turned down .'</li></ul> |
|
75 |
|
76 |
+
## Evaluation
|
|
|
77 |
|
78 |
+
### Metrics
|
79 |
+
| Label | Accuracy |
|
80 |
+
|:--------|:---------|
|
81 |
+
| **all** | 0.8842 |
|
82 |
|
83 |
+
## Uses
|
84 |
|
85 |
+
### Direct Use for Inference
|
86 |
|
87 |
+
First install the SetFit library:
|
88 |
|
89 |
```bash
|
90 |
+
pip install setfit
|
91 |
```
|
92 |
|
93 |
+
Then you can load this model and run inference.
|
94 |
|
95 |
```python
|
96 |
from setfit import SetFitModel
|
97 |
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("dkorat/bge-small-en-v1.5_setfit-sst2-english")
|
100 |
# Run inference
|
101 |
+
preds = model("a noble failure .")
|
102 |
```
|
103 |
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:-------|:----|
|
133 |
+
| Word count | 2 | 19.591 | 46 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:------|:----------------------|
|
137 |
+
| 0 | 479 |
|
138 |
+
| 1 | 521 |
|
139 |
+
|
140 |
+
### Training Hyperparameters
|
141 |
+
- batch_size: (16, 2)
|
142 |
+
- num_epochs: (1, 1)
|
143 |
+
- max_steps: -1
|
144 |
+
- sampling_strategy: oversampling
|
145 |
+
- num_iterations: 1
|
146 |
+
- body_learning_rate: (2e-05, 1e-05)
|
147 |
+
- head_learning_rate: 0.01
|
148 |
+
- loss: CosineSimilarityLoss
|
149 |
+
- distance_metric: cosine_distance
|
150 |
+
- margin: 0.25
|
151 |
+
- end_to_end: False
|
152 |
+
- use_amp: False
|
153 |
+
- warmup_proportion: 0.1
|
154 |
+
- seed: 42
|
155 |
+
- eval_max_steps: -1
|
156 |
+
- load_best_model_at_end: False
|
157 |
+
|
158 |
+
### Training Results
|
159 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
160 |
+
|:-----:|:----:|:-------------:|:---------------:|
|
161 |
+
| 0.008 | 1 | 0.241 | - |
|
162 |
+
| 0.4 | 50 | 0.2525 | - |
|
163 |
+
| 0.8 | 100 | 0.0607 | - |
|
164 |
+
|
165 |
+
### Framework Versions
|
166 |
+
- Python: 3.10.13
|
167 |
+
- SetFit: 1.0.3
|
168 |
+
- Sentence Transformers: 2.3.0
|
169 |
+
- Transformers: 4.37.2
|
170 |
+
- PyTorch: 2.1.2+cu121
|
171 |
+
- Datasets: 2.16.1
|
172 |
+
- Tokenizers: 0.15.1
|
173 |
+
|
174 |
+
## Citation
|
175 |
+
|
176 |
+
### BibTeX
|
177 |
```bibtex
|
178 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
179 |
+
doi = {10.48550/ARXIV.2209.11055},
|
180 |
+
url = {https://arxiv.org/abs/2209.11055},
|
181 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
182 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
183 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
184 |
+
publisher = {arXiv},
|
185 |
+
year = {2022},
|
186 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
187 |
}
|
188 |
```
|
189 |
+
|
190 |
+
<!--
|
191 |
+
## Glossary
|
192 |
+
|
193 |
+
*Clearly define terms in order to be accessible across audiences.*
|
194 |
+
-->
|
195 |
+
|
196 |
+
<!--
|
197 |
+
## Model Card Authors
|
198 |
+
|
199 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
200 |
+
-->
|
201 |
+
|
202 |
+
<!--
|
203 |
+
## Model Card Contact
|
204 |
+
|
205 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
206 |
+
-->
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -24,7 +24,7 @@
|
|
24 |
"pad_token_id": 0,
|
25 |
"position_embedding_type": "absolute",
|
26 |
"torch_dtype": "float32",
|
27 |
-
"transformers_version": "4.
|
28 |
"type_vocab_size": 2,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
24 |
"pad_token_id": 0,
|
25 |
"position_embedding_type": "absolute",
|
26 |
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.37.2",
|
28 |
"type_vocab_size": 2,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 30522
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0b24ae91024bae35a46a0ebcab9978cc3ef409d4d2ccf54acbfa7c666f76603
|
3 |
+
size 133462128
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4068de7435b164f0b4153e1792c925ff7105d0ca1747c5679d2f3116173be49d
|
3 |
+
size 4585
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
}
|
tokenizer_config.json
CHANGED
@@ -46,7 +46,7 @@
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
-
"model_max_length":
|
50 |
"never_split": null,
|
51 |
"pad_token": "[PAD]",
|
52 |
"sep_token": "[SEP]",
|
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
"never_split": null,
|
51 |
"pad_token": "[PAD]",
|
52 |
"sep_token": "[SEP]",
|