Whisper Large v3 Turbo - Bahriddin Muminov

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2958
  • Wer: 28.2582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.429 0.66 2000 0.4073 38.0018
0.2671 1.32 4000 0.3378 31.0778
0.2511 1.98 6000 0.3102 29.2484
0.1539 2.64 8000 0.3022 30.0763
0.111 3.3 10000 0.2958 28.2582

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
97
Safetensors
Model size
809M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for dataprizma/whisper-large-v3-turbo

Finetuned
(140)
this model

Dataset used to train dataprizma/whisper-large-v3-turbo

Space using dataprizma/whisper-large-v3-turbo 1

Evaluation results