metadata
dataset_info:
features:
- name: _id
dtype: string
- name: partition
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: language
dtype: string
- name: meta_information
struct:
- name: dummy_field
dtype: string
splits:
- name: queries
num_bytes: 1474009
num_examples: 20604
- name: corpus
num_bytes: 6522597
num_examples: 20604
download_size: 3372990
dataset_size: 7996606
Employing the CoIR evaluation framework's dataset version, utilize the code below for assessment:
import coir
from coir.data_loader import get_tasks
from coir.evaluation import COIR
from coir.models import YourCustomDEModel
model_name = "intfloat/e5-base-v2"
# Load the model
model = YourCustomDEModel(model_name=model_name)
# Get tasks
#all task ["codetrans-dl","stackoverflow-qa","apps","codefeedback-mt","codefeedback-st","codetrans-contest","synthetic-
# text2sql","cosqa","codesearchnet","codesearchnet-ccr"]
tasks = get_tasks(tasks=["codetrans-dl"])
# Initialize evaluation
evaluation = COIR(tasks=tasks,batch_size=128)
# Run evaluation
results = evaluation.run(model, output_folder=f"results/{model_name}")
print(results)