|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- image-segmentation |
|
- object-detection |
|
task_ids: |
|
- semantic-segmentation |
|
- instance-segmentation |
|
tags: |
|
- automotive |
|
- autonomous driving |
|
- synthetic |
|
- safe ai |
|
- validation |
|
- pedestrian detection |
|
- 2d object-detection |
|
- 3d object-detection |
|
- semantic-segmentation |
|
- instance-segmentation |
|
pretty_name: VALERIE22 |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments |
|
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/teaser_c.png"> |
|
|
|
## Dataset Description |
|
|
|
- **Paper:** https://arxiv.org/abs/2308.09632 |
|
- **Point of Contact:** [email protected] |
|
|
|
### Dataset Summary |
|
|
|
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline (see image below) providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs. |
|
|
|
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/VALERIE_overview1.png"> |
|
|
|
Each sequence of the dataset contains for each scene two rendered images. One is rendered with the default Blender tonemapping (/png) whereas the second is renderd with our photorealistic sensor simulation (see hagn2022optimized). The image below shows the difference of the two methods. |
|
|
|
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/SensorSimulation.png"> |
|
|
|
Following are some example images showing the unique characteristics of the different sequences. |
|
|
|
|Sequence0052|Sequence0054|Sequence0057|Sequence0058| |
|
|:---:|:---:|:---:|:---:| |
|
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq52_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq54_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq57_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq58_1.png" width="500">| |
|
|
|
|Sequence0059|Sequence0060|Sequence0062| |
|
|:---:|:---:|:---:| |
|
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq59_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq60_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq62_1.jpg" width="500">| |
|
|
|
|
|
|
|
### Supported Tasks |
|
|
|
- pedestrian detection |
|
- 2d object-detection |
|
- 3d object-detection |
|
- semantic-segmentation |
|
- instance-segmentation |
|
- ai-validation |
|
|
|
## Dataset Structure |
|
|
|
``` |
|
VALERIE22 |
|
ββββintel_results_sequence_0050 |
|
β ββββground-truth |
|
β β ββββ2d-bounding-box_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β ββββ3d-bounding-box_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β ββββclass-id_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β ββββgeneral-globally-per-frame-analysis_json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.json |
|
β β β ββββcar-camera000-0000-{UUID}-0000.csv |
|
β β ββββsemantic-group-segmentation_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β ββββsemantic-instance-segmentation_png |
|
β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β β ββββcar-camera000-0000-{UUID}-0000 |
|
β β β β ββββ{Entity-ID} |
|
β ββββsensor |
|
β β ββββcamera |
|
β β β ββββleft |
|
β β β β ββββpng |
|
β β β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
β β β β ββββpng_distorted |
|
β β β β β ββββcar-camera000-0000-{UUID}-0000.png |
|
ββββintel_results_sequence_0052 |
|
ββββintel_results_sequence_0054 |
|
ββββintel_results_sequence_0057 |
|
ββββintel_results_sequence_0058 |
|
ββββintel_results_sequence_0059 |
|
ββββintel_results_sequence_0060 |
|
ββββintel_results_sequence_0062 |
|
``` |
|
|
|
### Data Splits |
|
|
|
13476 images for trainining: |
|
``` |
|
dataset = load_dataset("Intel/VALERIE22", split="train") |
|
``` |
|
|
|
8406 images for validation and test: |
|
``` |
|
dataset = load_dataset("Intel/VALERIE22", split="validation") |
|
dataset = load_dataset("Intel/VALERIE22", split="test") |
|
``` |
|
|
|
### Licensing Information |
|
|
|
CC BY 4.0 |
|
|
|
## Grant Information |
|
|
|
Generated within project KI-Abischerung with funding of the German Federal Ministry of Industry and Energy under grant number 19A19005M. |
|
|
|
### Citation Information |
|
Relevant publications: |
|
|
|
``` |
|
@misc{grau2023valerie22, |
|
title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments}, |
|
author={Oliver Grau and Korbinian Hagn}, |
|
year={2023}, |
|
eprint={2308.09632}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
@inproceedings{hagn2022increasing, |
|
title={Increasing pedestrian detection performance through weighting of detection impairing factors}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium}, |
|
pages={1--10}, |
|
year={2022} |
|
} |
|
|
|
@inproceedings{hagn2022validation, |
|
title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={European Conference on Computer Vision}, |
|
pages={476--491}, |
|
year={2022}, |
|
organization={Springer} |
|
} |
|
|
|
@incollection{grau2022variational, |
|
title={A variational deep synthesis approach for perception validation}, |
|
author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub}, |
|
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety}, |
|
pages={359--381}, |
|
year={2022}, |
|
publisher={Springer International Publishing Cham} |
|
} |
|
|
|
@incollection{hagn2022optimized, |
|
title={Optimized data synthesis for DNN training and validation by sensor artifact simulation}, |
|
author={Hagn, Korbinian and Grau, Oliver}, |
|
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety}, |
|
pages={127--147}, |
|
year={2022}, |
|
publisher={Springer International Publishing Cham} |
|
} |
|
|
|
@inproceedings{syed2020dnn, |
|
title={DNN analysis through synthetic data variation}, |
|
author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian}, |
|
booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium}, |
|
pages={1--10}, |
|
year={2020} |
|
} |
|
``` |