IMAGE_ID
stringlengths
8
8
CAPTION
stringclasses
1 value
IMG
imagewidth (px)
293
8.01k
00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
00000020
00000021
00000022
00000023
00000024
00000025
00000026
00000027
00000028
00000029
00000030
00000031
00000032
00000033
00000034
00000035
00000036
00000037
00000038
00000039
00000040
00000041
00000042
00000043
00000044
00000045
00000046
00000047
00000048
00000049
00000050
00000051
00000052
00000053
00000054
00000055
00000056
00000057
00000058
00000059
00000060
00000061
00000062
00000063
00000064
00000065
00000066
00000067
00000068
00000069
00000070
00000071
00000072
00000073
00000074
00000075
00000076
00000077
00000078
00000079
00000080
00000081
00000082
00000083
00000084
00000085
00000086
00000087
00000088
00000089
00000090
00000091
00000092
00000093
00000094
00000095
00000096
00000097
00000098
00000099

It can be captioned by PaliGemma2

from datasets import load_dataset
from tqdm import tqdm

dataset = load_dataset("WeiChow/splash")

for item in dataset:
    ...

caption:

from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
import torch
from datasets import load_dataset
from tqdm import tqdm
from termcolor import cprint

dataset = load_dataset("WeiChow/splash")

model_id = "google/paligemma2-3b-ft-docci-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda").eval()
processor = PaliGemmaProcessor.from_pretrained(model_id)

for item in dataset:
    model_inputs = processor(text="caption en", images=item['IMG'], return_tensors="pt").to(torch.bfloat16).to(model.device)
    input_len = model_inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        generation = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
        generation = generation[0][input_len:]
        decoded = processor.decode(generation, skip_special_tokens=True)
        print(item['IMAGE_ID'])
        cprint(decoded, 'cyan')
Downloads last month
192