model
stringlengths
23
62
wer
float64
0.04
1.36
cer
float64
0.01
0.84
timestamp
timestamp[ns]
BounharAbdelaziz/Morocco-Darija-STT-tiny
0.151625
0.049208
2025-01-04T16:19:23.660000
BounharAbdelaziz/Morocco-Darija-STT-small
0.227437
0.062119
2025-01-04T16:20:23.166000
BounharAbdelaziz/Morocco-Darija-STT-large-v1.2
0.040915
0.012667
2025-01-04T16:25:43.513000
openai/whisper-large-v3-turbo
1.359807
0.837759
2025-01-04T16:26:59.585000
openai/whisper-large-v3
0.921781
0.500122
2025-01-04T16:28:26.395000
boumehdi/wav2vec2-large-xlsr-moroccan-darija
0.641396
0.218514
2025-01-04T16:29:04.530000
abdelkader12/whisper-small-ar
0.755716
0.312546
2025-01-04T16:29:39.679000
ychafiqui/whisper-medium-darija
0.749699
0.319854
2025-01-04T16:32:07.948000
ychafiqui/whisper-small-darija
0.783394
0.318636
2025-01-04T16:33:05.513000
BounharAbdelaziz/Morocco-Darija-STT-tiny-v1.3
0.746089
0.318879
2025-01-04T16:33:17.603000
BounharAbdelaziz/Morocco-Darija-STT-small-v1.3
0.604091
0.217783
2025-01-04T16:33:42.557000
openai/whisper-large-v3-turbo-forced-ar
1.275572
0.812424
2025-01-04T16:44:02.538000
openai/whisper-large-v3-forced-ar
1.340554
0.703532
2025-01-04T16:45:23.024000
BounharAbdelaziz/Morocco-Darija-STT-large-turbo-v1.3-forced-ar
0.483755
0.159074
2025-01-04T17:49:44.765000
BounharAbdelaziz/Morocco-Darija-STT-large-turbo-v1.3
0.483755
0.159074
2025-01-04T17:55:44.814000
BounharAbdelaziz/Morocco-Darija-STT-tiny
0.151625
0.049208
2025-01-04T18:00:46.567000
BounharAbdelaziz/Morocco-Darija-STT-large-turbo-v1.3
0.483755
0.159074
2025-01-04T18:01:28.861000
BounharAbdelaziz/Morocco-Darija-STT-small
0.227437
0.062119
2025-01-04T18:03:44.593000
BounharAbdelaziz/Morocco-Darija-STT-tiny-v1.3
0.746089
0.318879
2025-01-04T18:08:42.999000

Overview

This dataset contains evaluation metrics for various Automatic Speech Recognition (ASR) models on Moroccan Darija. This dataset contains Word Error Rate (WER) and Character Error Rate (CER) metrics for different ASR models evaluated on a common evaluation set. These metrics are standard measurements used to assess the accuracy of speech recognition systems.

  • WER (Word Error Rate): Measures the percentage of words that were incorrectly predicted. Lower values indicate better performance.
  • CER (Character Error Rate): Measures the percentage of characters that were incorrectly predicted. Lower values indicate better performance.

Evaluation Details

Test Set

Computation Method

  • Metrics are computed using the jiwer library
  • All audio samples are normalized and resampled to 16kHz before transcription
  • Ground truth transcriptions are compared with model predictions using space-separated word comparison

Currently evaluated model

  • "BounharAbdelaziz/Morocco-Darija-STT-tiny"
  • "BounharAbdelaziz/Morocco-Darija-STT-small"
  • "BounharAbdelaziz/Morocco-Darija-STT-large-v1.2"
  • "openai/whisper-large-v3-turbo"
  • "openai/whisper-large-v3"
  • "boumehdi/wav2vec2-large-xlsr-moroccan-darija"
  • "abdelkader12/whisper-small-ar"
  • "ychafiqui/whisper-medium-darija"
  • "ychafiqui/whisper-small-darija"
  • ...please add yours after eval...

Data Format

Each row in the dataset contains:

{
    'model': str,       # Model identifier/name
    'wer': float,      # Word Error Rate (0.0 to 1.0)
    'cer': float       # Character Error Rate (0.0 to 1.0)
}
Downloads last month
18