Datasets:
File size: 6,557 Bytes
17c5d3e 3ec6286 17c5d3e 3ec6286 afb5a6b 3ec6286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': accordion
'1': airplanes
'2': anchor
'3': ant
'4': barrel
'5': bass
'6': beaver
'7': binocular
'8': bonsai
'9': brain
'10': brontosaurus
'11': buddha
'12': butterfly
'13': camera
'14': cannon
'15': car_side
'16': ceiling_fan
'17': cellphone
'18': chair
'19': chandelier
'20': cougar_body
'21': cougar_face
'22': crab
'23': crayfish
'24': crocodile
'25': crocodile_head
'26': cup
'27': dalmatian
'28': dollar_bill
'29': dolphin
'30': dragonfly
'31': electric_guitar
'32': elephant
'33': emu
'34': euphonium
'35': ewer
'36': faces
'37': faces_easy
'38': ferry
'39': flamingo
'40': flamingo_head
'41': garfield
'42': gerenuk
'43': gramophone
'44': grand_piano
'45': hawksbill
'46': headphone
'47': hedgehog
'48': helicopter
'49': ibis
'50': inline_skate
'51': joshua_tree
'52': kangaroo
'53': ketch
'54': lamp
'55': laptop
'56': leopards
'57': llama
'58': lobster
'59': lotus
'60': mandolin
'61': mayfly
'62': menorah
'63': metronome
'64': minaret
'65': motorbikes
'66': nautilus
'67': octopus
'68': okapi
'69': pagoda
'70': panda
'71': pigeon
'72': pizza
'73': platypus
'74': pyramid
'75': revolver
'76': rhino
'77': rooster
'78': saxophone
'79': schooner
'80': scissors
'81': scorpion
'82': sea_horse
'83': snoopy
'84': soccer_ball
'85': stapler
'86': starfish
'87': stegosaurus
'88': stop_sign
'89': strawberry
'90': sunflower
'91': tick
'92': trilobite
'93': umbrella
'94': watch
'95': water_lilly
'96': wheelchair
'97': wild_cat
'98': windsor_chair
'99': wrench
'100': yin_yang
splits:
- name: train
num_bytes: 121007587.037
num_examples: 8677
download_size: 121217709
dataset_size: 121007587.037
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: unknown
task_categories:
- image-classification
size_categories:
- 1K<n<10K
---
# Dataset Card for Caltech 101
This dataset contains images of objects from 101 distinct categories, with each category comprising approximately 40 to 800 images. The majority of categories include around 50 images each. The images were collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc’Aurelio Ranzato. Each image has an approximate resolution of 300 x 200 pixels.
### Dataset Sources
- **Website:** https://data.caltech.edu/records/mzrjq-6wc02
## Use in FL
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
To partition the dataset, do the following.
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner
fds = FederatedDataset(
dataset="flwrlabs/caltech101",
partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```
## Dataset Structure
### Data Instances
The first instance of the train split is presented below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=397x150>,
'label': 1
}
```
### Data Split
```
DatasetDict({
train: Dataset({
features: ['image', 'label'],
num_rows: 8677
})
})
```
## Implementation details
Note that in this implementation, the string labels are first transformed into lowercase and then sorted alphabetically before providing the integer mapping. This methodology can vary across implementations.
## Citation
When working with the Caltech-101 dataset, please cite the original paper.
If you're using this dataset with Flower Datasets and Flower, cite Flower.
**BibTeX:**
Dataset Bibtex:
```
@misc{li2022caltech,
title = {Caltech 101},
author = {Li, Fei-Fei and Andreeto, Marco and Ranzato, Marc'Aurelio and Perona, Pietro},
year = {2022},
month = {Apr},
publisher = {CaltechDATA},
doi = {10.22002/D1.20086},
abstract = {Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a MATLAB script to view the annotations, 'show_annotations.m'.}
}
````
Flower:
```
@article{DBLP:journals/corr/abs-2007-14390,
author = {Daniel J. Beutel and
Taner Topal and
Akhil Mathur and
Xinchi Qiu and
Titouan Parcollet and
Nicholas D. Lane},
title = {Flower: {A} Friendly Federated Learning Research Framework},
journal = {CoRR},
volume = {abs/2007.14390},
year = {2020},
url = {https://arxiv.org/abs/2007.14390},
eprinttype = {arXiv},
eprint = {2007.14390},
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Dataset Card Contact
If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/). |