File size: 5,940 Bytes
2a08364 60d695a 2a08364 7e79606 d430d44 7e79606 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
dataset_info:
features:
- name: image
dtype: image
- name: domain
dtype: string
- name: label
dtype:
class_label:
names:
'0': Alarm_Clock
'1': Backpack
'2': Batteries
'3': Bed
'4': Bike
'5': Bottle
'6': Bucket
'7': Calculator
'8': Calendar
'9': Candles
'10': Chair
'11': Clipboards
'12': Computer
'13': Couch
'14': Curtains
'15': Desk_Lamp
'16': Drill
'17': Eraser
'18': Exit_Sign
'19': Fan
'20': File_Cabinet
'21': Flipflops
'22': Flowers
'23': Folder
'24': Fork
'25': Glasses
'26': Hammer
'27': Helmet
'28': Kettle
'29': Keyboard
'30': Knives
'31': Lamp_Shade
'32': Laptop
'33': Marker
'34': Monitor
'35': Mop
'36': Mouse
'37': Mug
'38': Notebook
'39': Oven
'40': Pan
'41': Paper_Clip
'42': Pen
'43': Pencil
'44': Postit_Notes
'45': Printer
'46': Push_Pin
'47': Radio
'48': Refrigerator
'49': Ruler
'50': Scissors
'51': Screwdriver
'52': Shelf
'53': Sink
'54': Sneakers
'55': Soda
'56': Speaker
'57': Spoon
'58': TV
'59': Table
'60': Telephone
'61': ToothBrush
'62': Toys
'63': Trash_Can
'64': Webcam
splits:
- name: train
num_bytes: 1300903275.02
num_examples: 15588
download_size: 1158984115
dataset_size: 1300903275.02
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: other
license_name: fair-use-notice
license_link: https://www.hemanthdv.org/officeHomeDataset.html#:~:text=Fair%20Use%20Notice,Christopher%20Thomas)
size_categories:
- 10K<n<100K
---
# Dataset Card for Office-Home
The Office-Home dataset has been created to evaluate domain adaptation algorithms for object recognition using deep learning. It consists of images from 4 different domains: Artistic images, Clip Art, Product images and Real-World images. For each domain, the dataset contains images of 65 object categories found typically in Office and Home settings.
## Dataset Details
The dataset information is based on the original dataset website: https://www.hemanthdv.org/officeHomeDataset.html.
This implementation is based on the shared data (images + a CSV file).
### Dataset Sources
- **Website:** https://www.hemanthdv.org/officeHomeDataset.html
- **Paper:** https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper.pdf
- **Original Code:** https://github.com/hemanthdv/da-hash
## Use in FL
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
To partition the dataset, do the following.
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner
fds = FederatedDataset(
dataset="flwrlabs/office-home",
partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```
## Dataset Structure
### Data Instances
The first instance of the train split is presented below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640>,
'domain': 'Real World',
'label': 0
}
```
### Data Split
```
DatasetDict({
train: Dataset({
features: ['image', 'domain', 'label'],
num_rows: 15588
})
})
```
## Implementation details
The CSV file from the original source contains paths to samples with a subfolder named "Clock";
however, such data does not exist. However, if counting this category, there would be 66 classes.
I believe this class was forgotten to be edited because there's a different class present in the
dataset named "Alarm-Clock". This state better reflects the number of samples specified in the paper.
## Citation
When working with the Office-Home dataset, please cite the original paper.
If you're using this dataset with Flower Datasets and Flower, cite Flower.
**BibTeX:**
Original paper:
```
@inproceedings{venkateswara2017deep,
title={Deep hashing network for unsupervised domain adaptation},
author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5018--5027},
year={2017}
}
````
Flower:
```
@article{DBLP:journals/corr/abs-2007-14390,
author = {Daniel J. Beutel and
Taner Topal and
Akhil Mathur and
Xinchi Qiu and
Titouan Parcollet and
Nicholas D. Lane},
title = {Flower: {A} Friendly Federated Learning Research Framework},
journal = {CoRR},
volume = {abs/2007.14390},
year = {2020},
url = {https://arxiv.org/abs/2007.14390},
eprinttype = {arXiv},
eprint = {2007.14390},
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Dataset Card Contact
If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/). |