Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 5,940 Bytes
2a08364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d695a
 
 
 
 
2a08364
7e79606
 
 
 
 
 
d430d44
 
7e79606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: domain
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': Alarm_Clock
          '1': Backpack
          '2': Batteries
          '3': Bed
          '4': Bike
          '5': Bottle
          '6': Bucket
          '7': Calculator
          '8': Calendar
          '9': Candles
          '10': Chair
          '11': Clipboards
          '12': Computer
          '13': Couch
          '14': Curtains
          '15': Desk_Lamp
          '16': Drill
          '17': Eraser
          '18': Exit_Sign
          '19': Fan
          '20': File_Cabinet
          '21': Flipflops
          '22': Flowers
          '23': Folder
          '24': Fork
          '25': Glasses
          '26': Hammer
          '27': Helmet
          '28': Kettle
          '29': Keyboard
          '30': Knives
          '31': Lamp_Shade
          '32': Laptop
          '33': Marker
          '34': Monitor
          '35': Mop
          '36': Mouse
          '37': Mug
          '38': Notebook
          '39': Oven
          '40': Pan
          '41': Paper_Clip
          '42': Pen
          '43': Pencil
          '44': Postit_Notes
          '45': Printer
          '46': Push_Pin
          '47': Radio
          '48': Refrigerator
          '49': Ruler
          '50': Scissors
          '51': Screwdriver
          '52': Shelf
          '53': Sink
          '54': Sneakers
          '55': Soda
          '56': Speaker
          '57': Spoon
          '58': TV
          '59': Table
          '60': Telephone
          '61': ToothBrush
          '62': Toys
          '63': Trash_Can
          '64': Webcam
  splits:
  - name: train
    num_bytes: 1300903275.02
    num_examples: 15588
  download_size: 1158984115
  dataset_size: 1300903275.02
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: other
license_name: fair-use-notice
license_link: https://www.hemanthdv.org/officeHomeDataset.html#:~:text=Fair%20Use%20Notice,Christopher%20Thomas)
size_categories:
- 10K<n<100K
---
# Dataset Card for Office-Home

The Office-Home dataset has been created to evaluate domain adaptation algorithms for object recognition using deep learning. It consists of images from 4 different domains: Artistic images, Clip Art, Product images and Real-World images. For each domain, the dataset contains images of 65 object categories found typically in Office and Home settings.

## Dataset Details

The dataset information is based on the original dataset website: https://www.hemanthdv.org/officeHomeDataset.html. 
This implementation is based on the shared data (images + a CSV file).

### Dataset Sources

- **Website:** https://www.hemanthdv.org/officeHomeDataset.html
- **Paper:** https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper.pdf
- **Original Code:** https://github.com/hemanthdv/da-hash

## Use in FL

In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/office-home",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```

## Dataset Structure

### Data Instances

The first instance of the train split is presented below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640>,
 'domain': 'Real World',
 'label': 0
}
```
### Data Split

```
DatasetDict({
    train: Dataset({
        features: ['image', 'domain', 'label'],
        num_rows: 15588
    })
})
```

## Implementation details
The CSV file from the original source contains paths to samples with a subfolder named "Clock"; 
however, such data does not exist. However, if counting this category, there would be 66 classes. 
I believe this class was forgotten to be edited because there's a different class present in the 
dataset named "Alarm-Clock". This state better reflects the number of samples specified in the paper.

## Citation

When working with the Office-Home dataset, please cite the original paper. 
If you're using this dataset with Flower Datasets and Flower, cite Flower.

**BibTeX:**

Original paper:
```
@inproceedings{venkateswara2017deep,
  title={Deep hashing network for unsupervised domain adaptation},
  author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={5018--5027},
  year={2017}
}
````

Flower:

```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).