Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Search is not available for this dataset
image
imagewidth (px)
16
16
label
class label
10 classes
66
55
44
77
33
66
33
11
00
11
77
00
11
11
77
77
44
88
00
11
44
88
77
44
88
77
33
77
44
11
33
66
77
44
11
33
77
77
44
55
44
22
77
44
11
33
77
77
44
00
66
33
22
00
88
66
66
22
00
88
77
88
22
00
99
00
22
22
00
88
11
22
00
88
33
33
22
88
22
22
00
88
11
44
44
88
99
88
99
66
77
66
11
99
77
00
88
00
44
66

Dataset Card for USPS

USPS is a digit dataset automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16 pixel grayscale samples.

Dataset Details

The images are centered and normalized. They show a broad range of font styles.

Dataset Sources

Uses

In order to prepare the dataset for the FL settings, we recommend using Flower Dataset (flwr-datasets) for the dataset download and partitioning and Flower (flwr) for conducting FL experiments.

To partition the dataset, do the following.

  1. Install the package.
pip install flwr-datasets[vision]
  1. Use the HF Dataset under the hood in Flower Datasets.
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/usps",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)

Dataset Structure

Data Instances

The first instance of the train split is presented below:

{
  'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=16x16 at 0x133B4BA90>,
  'label': 6
}

Data Split

DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 7291
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 2007
    })
})

Citation

When working with the USPS dataset, please cite the original paper. If you're using this dataset with Flower Datasets and Flower, cite Flower.

BibTeX:

Original paper:

@article{hull1994database,
  title={A database for handwritten text recognition research},
  journal={IEEE Transactions on pattern analysis and machine intelligence},
  volume={16},
  number={5},
  pages={550--554},
  year={1994},
  publisher={IEEE}
}

Flower:

@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact Flower Labs.

Downloads last month
141