pdf
stringlengths
49
199
aff
stringlengths
1
1.36k
year
stringclasses
19 values
technical_novelty_avg
float64
0
4
video
stringlengths
21
47
doi
stringlengths
31
63
presentation_avg
float64
0
4
proceeding
stringlengths
43
129
presentation
stringclasses
796 values
sess
stringclasses
576 values
technical_novelty
stringclasses
700 values
arxiv
stringlengths
10
16
author
stringlengths
1
1.96k
site
stringlengths
37
191
keywords
stringlengths
2
582
oa
stringlengths
86
198
empirical_novelty_avg
float64
0
4
poster
stringlengths
57
95
openreview
stringlengths
41
45
conference
stringclasses
11 values
corr_rating_confidence
float64
-1
1
corr_rating_correctness
float64
-1
1
project
stringlengths
1
162
track
stringclasses
3 values
rating_avg
float64
0
10
rating
stringlengths
1
17
correctness
stringclasses
809 values
slides
stringlengths
32
41
title
stringlengths
2
192
github
stringlengths
3
165
authors
stringlengths
7
161
correctness_avg
float64
0
5
confidence_avg
float64
0
5
status
stringclasses
22 values
confidence
stringlengths
1
17
empirical_novelty
stringclasses
763 values
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
task clustering;matrix completion;multi-task learning;few-shot learning
null
0
null
null
iclr
0
0
null
main
4.666667
4;5;5
null
null
Robust Task Clustering for Deep and Diverse Multi-Task and Few-Shot Learning
null
null
0
4
Withdraw
4;4;4
null
null
Department of Electronics and Computer Science, University of Southampton
2018
0
null
null
0
null
null
null
null
null
Yan Zhang, Jonathon Hare, Adam Prugel-Bennett
https://iclr.cc/virtual/2018/poster/307
visual question answering;vqa;counting
null
0
null
null
iclr
-1
0
null
main
5.333333
4;6;6
null
null
Learning to Count Objects in Natural Images for Visual Question Answering
https://github.com/Cyanogenoid/vqa-counting
null
0
3.333333
Poster
4;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
0
null
null
null
THINK VISUALLY: QUESTION ANSWERING THROUGH VIRTUAL IMAGERY
null
null
0
0
Active
null
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
interpretability;generative adversarial networks
null
0
null
null
iclr
-0.240192
0
null
main
6.333333
4;7;8
null
null
Thinking like a machine — generating visual rationales through latent space optimization
null
null
0
3
Reject
3;4;2
null
null
University of British Columbia
2018
0
null
null
0
null
null
null
null
null
Glen Berseth, Cheng Xie, Paul Cernek, Michiel van de Panne
https://iclr.cc/virtual/2018/poster/300
Reinforcement Learning;Distillation;Transfer Learning;Continual Learning
null
0
null
null
iclr
1
0
null
main
6.333333
5;7;7
null
null
Progressive Reinforcement Learning with Distillation for Multi-Skilled Motion Control
null
null
0
3.666667
Poster
3;4;4
null
null
Carnegie Mellon University; Google Brain
2018
0
null
null
0
null
null
null
null
null
null
null
squad;stanford question answering dataset;reading comprehension;attention;text convolutions;question answering
null
0
null
null
iclr
0.654654
0
null
main
6.333333
5;6;8
null
null
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
null
null
0
4
Poster
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Non-convex optimization;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
5.333333
4;6;6
null
null
No Spurious Local Minima in a Two Hidden Unit ReLU Network
null
null
0
3
Workshop
4;3;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
boosting learning;deep learning;neural network
null
0
null
null
iclr
-0.960769
0
null
main
4.333333
2;5;6
null
null
Deep Boosting of Diverse Experts
null
null
0
4
Reject
5;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
reinforcement learning;safe exploration;dqn
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;5;7
null
null
Avoiding Catastrophic States with Intrinsic Fear
null
null
0
4
Reject
4;5;3
null
null
Columbia University, New York, NY 10027, USA
2018
0
null
null
0
null
null
null
null
null
Christopher Cueva, Xue-Xin Wei
https://iclr.cc/virtual/2018/poster/245
recurrent neural network;grid cell;neural representation of space
null
0
null
null
iclr
0
0
null
main
8.333333
8;8;9
null
null
Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
null
null
0
4
Poster
4;4;4
null
null
Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, CIFAR Senior Fellow; Montréal Institute for Learning Algorithms (MILA), Université de Montréal, Work done while author was an intern at Microsoft Research Montreal; Montréal Institute for Learning Algorithms (MILA), Ecole Polytechnique de Montréal
2018
0
null
null
0
null
null
null
null
null
Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher Pal
https://iclr.cc/virtual/2018/poster/99
distributed sentence representations;multi-task learning
null
0
null
null
iclr
0
0
null
main
6.666667
4;8;8
null
null
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning
null
null
0
5
Poster
5;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
clustering;deep learning;neural networks
null
0
null
null
iclr
-0.5
0
null
main
2.666667
2;3;3
null
null
Clustering with Deep Learning: Taxonomy and New Methods
null
null
0
4.666667
Reject
5;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
NLU;word embeddings;representation learning
null
0
null
null
iclr
-1
0
null
main
5.666667
5;5;7
null
null
Learning to Compute Word Embeddings On the Fly
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
program synthesis;program induction;example selection
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Learning to select examples for program synthesis
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Anonymous
null
Deep Learning;Autoencoders;Alternating Optimization
null
0
null
null
iclr
0.755929
0
null
main
5.666667
4;6;7
null
null
Training Autoencoders by Alternating Minimization
null
null
0
4.333333
Reject
4;4;5
null
null
UC Berkeley, Department of Electrical Engineering and Computer Science
2018
0
null
null
0
null
null
null
null
null
Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel
https://iclr.cc/virtual/2018/poster/64
meta-learning;few-shot learning
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
A Simple Neural Attentive Meta-Learner
null
null
0
3.333333
Poster
3;3;4
null
null
Google Brain
2018
0
null
null
0
null
null
null
null
null
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein
https://iclr.cc/virtual/2018/poster/91
Gaussian process;Bayesian regression;deep networks;kernel methods
null
0
null
null
iclr
-0.755929
0
null
main
5.666667
4;6;7
null
null
Deep Neural Networks as Gaussian Processes
null
null
0
3.666667
Poster
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;mult-agent systems
null
0
null
null
iclr
0
0
null
main
3.333333
3;3;4
null
null
Autonomous Vehicle Fleet Coordination With Deep Reinforcement Learning
null
null
0
4
Reject
5;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.5
0
null
main
5.666667
5;5;7
null
null
Federated Learning: Strategies for Improving Communication Efficiency
null
null
0
4.333333
Reject
3;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
SVM;siamese network;one-shot learning;few-shot learning
null
0
null
null
iclr
0
0
null
main
4
3;4;5
null
null
Make SVM great again with Siamese kernel for few-shot learning
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
autonomous lane changing;decision making;deep reinforcement learning;q-learning
null
0
null
null
iclr
0
0
null
main
3
3;3;3
null
null
Tactical Decision Making for Lane Changing with Deep Reinforcement Learning
null
null
0
4.666667
Withdraw
5;4;5
null
null
The University of Tokyo, RIKEN; The University of Tokyo
2018
0
null
null
0
null
null
null
null
null
Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada
https://iclr.cc/virtual/2018/poster/259
sound recognition;supervised learning;feature learning
null
0
null
null
iclr
0
0
null
main
7
4;8;9
null
null
Learning from Between-class Examples for Deep Sound Recognition
https://github.com/mil-tokyo/bc_learning_sound/
null
0
4
Poster
4;4;4
null
null
Redwood Center for Theoretical Neuroscience, University of California, Berkeley
2018
0
null
null
0
null
null
null
null
null
Alexander Anderson, Cory P Berg
https://iclr.cc/virtual/2018/poster/244
Binary Neural Networks;Neural Network Visualization
null
0
null
null
iclr
1
0
null
main
6
4;7;7
null
null
The High-Dimensional Geometry of Binary Neural Networks
null
null
0
3.666667
Poster
3;4;4
null
null
Department of Applied Mathematics and Statistics, Johns Hopkins University; Department of Computer Science, Johns Hopkins University
2018
0
null
null
0
null
null
null
null
null
Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee
https://iclr.cc/virtual/2018/poster/155
expressive power;benefits of depth;empirical risk minimization;global optimality;computational hardness;combinatorial optimization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
Understanding Deep Neural Networks with Rectified Linear Units
null
null
0
4.333333
Poster
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;Multi-Agent Reinforcement Learning;StarCraft Micromanagement Tasks
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;5;5
null
null
Revisiting The Master-Slave Architecture In Multi-Agent Deep Reinforcement Learning
null
null
0
4
Reject
3;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep learning;Structured Prediction;Natural Language Processing;Neural Program Synthesis
null
0
null
null
iclr
0
0
null
main
5.333333
4;5;7
null
null
Neural Program Search: Solving Data Processing Tasks from Description and Examples
null
null
0
4
Workshop
4;4;4
null
null
Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
2018
0
null
null
0
null
null
null
null
null
Abram Friesen, Pedro Domingos
https://iclr.cc/virtual/2018/poster/92
hard-threshold units;combinatorial optimization;target propagation;straight-through estimation;quantization
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Deep Learning as a Mixed Convex-Combinatorial Optimization Problem
null
null
0
3.666667
Poster
3;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
domain adaptation;neural networks;generative models;discriminative models
null
0
null
null
iclr
-1
0
null
main
5.333333
5;5;6
null
null
Principled Hybrids of Generative and Discriminative Domain Adaptation
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
style transfer;text generation;non-parallel data
null
0
null
null
iclr
0
0
null
main
0
null
null
null
Language Style Transfer from Non-Parallel Text with Arbitrary Styles
null
null
0
0
Withdraw
null
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
deep reinforcement learning;task execution;instruction execution
null
0
null
null
iclr
-0.5
0
https://youtu.be/e_ZXVS5VutM
main
5.333333
4;6;6
null
null
Neural Task Graph Execution
null
null
0
3.666667
Reject
4;3;4
null
null
Preferred Networks, Inc.; Ritsumeikan University; National Institute of Informatics
2018
0
null
null
0
null
null
null
null
null
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
https://iclr.cc/virtual/2018/poster/331
Generative Adversarial Networks;Deep Generative Models;Unsupervised Learning
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Spectral Normalization for Generative Adversarial Networks
https://github.com/pfnet-research/sngan_projection
null
0
3
Oral
4;2;3
null
null
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583
2018
0
null
null
0
null
null
null
null
null
Pan Zhou, Jiashi Feng, Pan Zhou
https://iclr.cc/virtual/2018/poster/329
Deep Learning Analysis;Deep Learning Theory;Empirical Risk;Landscape Analysis;Nonconvex Optimization
null
0
null
null
iclr
0
0
null
main
5.666667
3;7;7
null
null
Empirical Risk Landscape Analysis for Understanding Deep Neural Networks
null
null
0
3
Poster
3;3;3
null
null
MPI for Intelligent Systems; University of Amsterdam; Google Brain
2018
0
null
null
0
null
null
null
null
null
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schoelkopf
https://iclr.cc/virtual/2018/poster/76
fidelity-weighted learning;semisupervised learning;weakly-labeled data;teacher-student
null
0
null
null
iclr
0
0
null
main
6
5;6;7
null
null
Fidelity-Weighted Learning
null
null
0
3.666667
Poster
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Distributional shift;causal effects;domain adaptation
null
0
null
null
iclr
0.188982
0
null
main
6.666667
5;7;8
null
null
Learning Weighted Representations for Generalization Across Designs
null
null
0
3.333333
Reject
3;4;3
null
null
Google Brain
2018
0
null
null
0
null
null
null
null
null
Samuel Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V Le
https://iclr.cc/virtual/2018/poster/272
batch size;learning rate;simulated annealing;large batch training;scaling rules;stochastic gradient descent;sgd;imagenet;optimization
null
0
null
null
iclr
0
0
null
main
6.333333
6;6;7
null
null
Don't Decay the Learning Rate, Increase the Batch Size
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Bayesian Deep Learning;Amortized Inference;Variational Auto-Encoders;Learning to Learn
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Learning to Infer
null
null
0
4.333333
Workshop
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
GAN;medical;records;time;series;generation;privacy
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
null
null
0
4
Reject
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, Debbie Marr
https://iclr.cc/virtual/2018/poster/208
Low precision;binary;ternary;4-bits networks
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;5;9
null
null
WRPN: Wide Reduced-Precision Networks
null
null
0
3.666667
Poster
4;3;4
null
null
Accelerator Architecture Lab, Intel Labs
2018
0
null
null
0
null
null
null
null
null
Asit Mishra, Debbie Marr
https://iclr.cc/virtual/2018/poster/173
Ternary;4-bits;low precision;knowledge distillation;knowledge transfer;model compression
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Xu He, Herbert Jaeger
https://iclr.cc/virtual/2018/poster/233
Catastrophic Interference;Conceptor;Backpropagation;Continual Learning;Lifelong Learning
null
0
null
null
iclr
0
0
null
main
7
7;7;7
null
null
Overcoming Catastrophic Interference using Conceptor-Aided Backpropagation
null
null
0
3.666667
Poster
3;3;5
null
null
Paper under double-blind review
2018
0
null
null
0
null
null
null
null
null
null
null
Reading Comprehension;Answering Multiple Choice Questions
null
0
null
null
iclr
-1
0
null
main
4.666667
4;5;5
null
null
ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions
null
null
0
3.333333
Reject
4;3;3
null
null
Princeton University; Columbia University
2018
0
null
null
0
null
null
null
null
null
Sanjeev Arora, Mikhail Khodak, Nikunj Umesh Saunshi, Kiran Vodrahalli
https://iclr.cc/virtual/2018/poster/96
theory;LSTM;unsupervised learning;word embeddings;compressed sensing;sparse recovery;document representation;text classification
null
0
null
null
iclr
-0.755929
0
null
main
6.666667
6;7;7
null
null
A Compressed Sensing View of Unsupervised Text Embeddings, Bag-of-n-Grams, and LSTMs
null
null
0
2.666667
Poster
4;3;1
null
null
The University of Melbourne, Parkville, Australia; National Institute of Informatics, Tokyo, Japan; University of Michigan, Ann Arbor, USA; Tsinghua University, Beijing, China; University of California, Berkeley, USA
2018
0
null
null
0
null
null
null
null
null
Xingjun Ma, Bo Li, Yisen Wang, Sarah Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, James Bailey
https://iclr.cc/virtual/2018/poster/328
Adversarial Subspace;Local Intrinsic Dimensionality;Deep Neural Networks
null
0
null
null
iclr
0.654654
0
null
main
7
6;7;8
null
null
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
null
null
0
2.666667
Oral
1;4;3
null
null
Department of Computer Science, University of Bonn, Germany; Fraunhofer Institute IAIS, Sankt Augustin, Germany
2018
0
null
null
0
null
null
null
null
null
Henning Petzka, Asja Fischer, Denis Lukovnikov
https://iclr.cc/virtual/2018/poster/17
null
null
0
null
null
iclr
0.866025
0
null
main
5
2;6;7
null
null
On the regularization of Wasserstein GANs
null
null
0
3.666667
Poster
2;5;4
null
null
Robotics Institute, Carnegie Mellon University; Volvo Construction Equipment, Volvo Group
2018
0
null
null
0
null
null
null
null
null
Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M Kitani
https://iclr.cc/virtual/2018/poster/132
Deep learning;Neural networks;Model compression
null
0
null
null
iclr
0
0
null
main
6
4;5;9
null
null
N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
inversion scheme;deep neural networks;semi-supervised learning;MNIST;SVHN;CIFAR10
null
0
null
null
iclr
-1
0
null
main
5.333333
4;5;7
null
null
Semi-Supervised Learning via New Deep Network Inversion
null
null
0
3.666667
Reject
5;4;2
null
null
Courant Institute of Mathematical Sciences, Center for Data Science, New York, NY 10012, USA; Courant Institute of Mathematical Sciences, Center for Data Science, New York University, New York, NY 10012, USA
2018
0
null
null
0
null
null
null
null
null
Alex Nowak, David Folqué Garcia, Joan Bruna
https://iclr.cc/virtual/2018/poster/44
Neural Networks;Combinatorial Optimization;Algorithms
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Divide and Conquer Networks
null
null
0
3
Poster
3;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Word Embeddings;Tensor Factorization;Natural Language Processing
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
LEARNING SEMANTIC WORD RESPRESENTATIONS VIA TENSOR FACTORIZATION
null
null
0
4.333333
Reject
3;5;5
null
null
†The University of Hong Kong; ‡Salesforce Research
2018
0
null
null
0
null
null
null
null
null
Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, richard socher
https://iclr.cc/virtual/2018/poster/241
machine translation;non-autoregressive;transformer;fertility;nmt
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Non-Autoregressive Neural Machine Translation
null
null
0
4
Poster
4;4;4
null
null
UC Irvine; Amazon.com; Snap Inc; UC Santa Barbara; Think Big Analytics
2018
0
null
null
0
null
null
null
null
null
null
null
Recommender systems;deep learning;personalization
null
0
null
null
iclr
-0.5
0
null
main
6.333333
6;6;7
null
null
THE EFFECTIVENESS OF A TWO-LAYER NEURAL NETWORK FOR RECOMMENDATIONS
null
null
0
3.333333
Workshop
3;4;3
null
null
N/A
2018
0
null
null
0
null
null
null
null
null
null
null
vocabulary-informed learning;data augmentation
null
0
null
null
iclr
0.866025
0
null
main
5
4;5;6
null
null
VOCABULARY-INFORMED VISUAL FEATURE AUGMENTATION FOR ONE-SHOT LEARNING
null
null
0
3.666667
Reject
3;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
structured prediction;RAML;theory;Bayes decision rule;reward function
null
0
null
null
iclr
0
0
null
main
5.333333
5;5;6
null
null
Softmax Q-Distribution Estimation for Structured Prediction: A Theoretical Interpretation for RAML
null
null
0
3
Reject
4;2;3
null
null
The Institute for Theoretical Computer Science, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China; Department of Computer Science, University of Southern California, Los Angeles, USA
2018
0
null
null
0
null
null
null
null
null
Jiayuan Mao, Honghua Dong, Joseph J Lim
https://iclr.cc/virtual/2018/poster/3
reinforcement learning;transfer learning
null
0
null
null
iclr
1
0
null
main
6.333333
6;6;7
null
null
Universal Agent for Disentangling Environments and Tasks
null
null
0
3.333333
Poster
3;3;4
null
null
Stanford University; Google AI Perception; Google Brain
2018
0
null
null
0
null
null
null
null
null
Daniel Levy, Matthew D Hoffman, Jascha Sohl-Dickstein
https://iclr.cc/virtual/2018/poster/284
markov;chain;monte;carlo;sampling;posterior;deep;learning;hamiltonian;mcmc
null
0
null
null
iclr
-0.5
0
null
main
7
6;7;8
null
null
Generalizing Hamiltonian Monte Carlo with Neural Networks
https://github.com/google-research/google-research/tree/master/generalizing_hmc
null
0
3
Poster
3;4;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Reinforcement learning
null
0
null
null
iclr
1
0
null
main
5.666667
5;6;6
null
null
Learning Gaussian Policies from Smoothed Action Value Functions
null
null
0
3.666667
Reject
3;4;4
null
null
Department of Computer Science and Engineering, Indian Institute of Technology, Madras; Department of Mechanical Engineering, Indian Institute of Technology, Madras; Department of Electrical Engineering, Indian Institute of Technology, Madras; Department of Computer Science and Engineering, and Robert Bosch Centre for Data Science and AI (RBC-DSAI), Indian Institute of Technology, Madras
2018
0
null
null
0
null
null
null
null
null
Sahil Sharma, Ashutosh Kumar Jha, Parikshit Hegde, Balaraman Ravindran
https://iclr.cc/virtual/2018/poster/257
Deep Reinforcement Learning
null
0
null
null
iclr
0.5
0
null
main
6.333333
5;7;7
null
null
Learning to Multi-Task by Active Sampling
null
null
0
3.666667
Poster
3;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
forward modeling;partially observable;deep learning;strategy game;real-time strategy
null
0
null
null
iclr
0.944911
0
null
main
4.666667
4;5;5
null
null
Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger
null
null
0
2.666667
Reject
1;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
label noise;weakly supervised learning;robustness of neural networks;deep learning;large datasets
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Deep Learning is Robust to Massive Label Noise
null
null
0
4.666667
Reject
5;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Learning;Deconvolutional Layer;Pixel CNN
null
0
null
null
iclr
-0.5
0
null
main
5.333333
5;5;6
null
null
Pixel Deconvolutional Networks
null
null
0
4.333333
Reject
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Word embedding;tensor decomposition
null
0
null
null
iclr
0
0
null
main
5
5;5;5
null
null
Learning Covariate-Specific Embeddings with Tensor Decompositions
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
LVCSR;speech recognition;embedded;low rank factorization;RNN;GRU;trace norm
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Trace norm regularization and faster inference for embedded speech recognition RNNs
https://github.com/paddlepaddle/farm
null
0
3.666667
Reject
3;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
adversarial attacks;security;auto-encoder
null
0
null
null
iclr
-0.866025
0
null
main
4
3;4;5
null
null
LatentPoison -- Adversarial Attacks On The Latent Space
null
null
0
3.666667
Reject
4;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
natural language processing;background knowledge;word embeddings;question answering;natural language inference
null
0
null
null
iclr
0.5
0
null
main
5.333333
5;5;6
null
null
Dynamic Integration of Background Knowledge in Neural NLU Systems
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Manifold Learning;Non-linear Dimensionality Reduction;Neural Networks;Unsupervised Learning
null
0
null
null
iclr
0.866025
0
null
main
4
3;4;5
null
null
Parametric Manifold Learning Via Sparse Multidimensional Scaling
null
null
0
4.333333
Reject
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Attribute-aware Collaborative Filtering: Survey and Classification
null
null
0
4.666667
Withdraw
5;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
price predictions;expert system;recurrent neural networks;deep learning;natural language processing
null
0
null
null
iclr
1
0
null
main
4.666667
4;4;6
null
null
Predicting Auction Price of Vehicle License Plate with Deep Recurrent Neural Network
null
null
0
4.333333
Reject
4;4;5
null
null
Universit´e de Bretagne Sud, IRISA, UMR 6074, CNRS; Kyoto University, Graduate School of Informatics; NTT Communication Science Laboratories; Universit´e Cˆote d'Azur, Lagrange, UMR 7293, CNRS, OCA
2018
0
null
null
0
null
null
null
null
null
Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, Mathieu Blondel
https://iclr.cc/virtual/2018/poster/179
optimal transport;Wasserstein;domain adaptation;generative models;Monge map;optimal mapping
null
0
null
null
iclr
0
0
null
main
6.75
6;6;7;8
null
null
Large Scale Optimal Transport and Mapping Estimation
null
null
0
3
Poster
3;3;3;3
null
null
Google
2018
0
null
null
0
null
null
null
null
null
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang
https://iclr.cc/virtual/2018/poster/187
differential privacy;LSTMs;language models;privacy
null
0
null
null
iclr
0.5
0
null
main
7.333333
7;7;8
null
null
Learning Differentially Private Recurrent Language Models
null
null
0
3.333333
Poster
2;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
-0.5
0
null
main
4.666667
4;5;5
null
null
Learning what to learn in a neural program
null
null
0
3.333333
Reject
4;4;2
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Multimodal Sentiment Analysis To Explore the Structure of Emotions
null
null
0
5
Reject
5;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
RNNs
null
0
null
null
iclr
-0.188982
0
null
main
4.333333
3;4;6
null
null
Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Reinforcement Learning;Imitation Learning
null
0
null
null
iclr
-0.866025
0
null
main
5.666667
5;6;6
null
null
Faster Reinforcement Learning with Expert State Sequences
null
null
0
4
Reject
5;4;3
null
null
Department of Engineering Science, University of Oxford; Department of Statistics, University of Oxford
2018
0
null
null
0
null
null
null
null
null
Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, Frank Wood
https://iclr.cc/virtual/2018/poster/31
Variational Autoencoders;Inference amortization;Model learning;Sequential Monte Carlo;ELBOs
null
0
null
null
iclr
0.866025
0
null
main
5.666667
3;7;7
null
null
Auto-Encoding Sequential Monte Carlo
null
null
0
3
Poster
2;4;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
supervised learning;unsupervised learning;self-organization;internal representation;topological structure
null
0
null
null
iclr
-1
0
null
main
2.666667
2;2;4
null
null
Self-Organization adds application robustness to deep learners
null
null
0
4.666667
Withdraw
5;5;4
null
null
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology; Paul G. Allen School of Computer Science & Engineering, University of Washington
2018
0
null
null
0
null
null
null
null
null
Yonatan Belinkov, Yonatan Bisk
https://iclr.cc/virtual/2018/poster/172
neural machine translation;characters;noise;adversarial examples;robust training
null
0
null
null
iclr
0
0
null
main
7.333333
7;7;8
null
null
Synthetic and Natural Noise Both Break Neural Machine Translation
null
null
0
4
Oral
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Deep Reinforcement Learning;Domain Adaptation;Adversarial Networks
null
0
null
null
iclr
0.5
0
null
main
3
2;3;4
null
null
Domain Adaptation for Deep Reinforcement Learning in Visually Distinct Games
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
linear quadratic regulator;policy gradient;natural gradient;reinforcement learning;non-convex optimization
null
0
null
null
iclr
1
0
null
main
5.333333
5;5;6
null
null
Global Convergence of Policy Gradient Methods for Linearized Control Problems
null
null
0
3.333333
Reject
3;3;4
null
null
Under double-blind review
2018
0
null
null
0
null
null
null
null
null
null
null
adversarial examples
null
0
null
null
iclr
-0.944911
0
https://youtu.be/YXy6oX1iNoA
main
6.333333
5;6;8
null
null
Synthesizing Robust Adversarial Examples
null
null
0
3.666667
Reject
4;4;3
null
null
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
2018
0
null
null
0
null
null
null
null
null
Murat Kocaoglu, Christopher Snyder, Alexandros Dimakis, Sriram Vishwanath
https://iclr.cc/virtual/2018/poster/159
causality;structural causal models;GANs;conditional GANs;BEGAN;adversarial training
null
0
null
null
iclr
0
0
null
main
7.333333
6;7;9
null
null
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
null
null
0
3
Poster
3;3;3
null
null
Racah Institute of Physics, The Hebrew University of Jerusalem; Department of Engineering Science, University of Oxford; Assistant Professor at the Federal University of Rio Grande, Rio Grande, Brazil
2018
0
null
null
0
null
null
null
null
null
Zohar Ringel, Rodrigo Andrade de Bem
https://iclr.cc/virtual/2018/poster/303
Deep Convolutional Networks;Loss function landscape;Graph Structured Data;Training Complexity;Theory of deep learning;Percolation theory;Anderson Localization
null
0
null
null
iclr
1
0
null
main
6.666667
6;7;7
null
null
Critical Percolation as a Framework to Analyze the Training of Deep Networks
null
null
0
2.333333
Poster
1;3;3
null
null
Microsoft Business AI and Research, National Taiwan University; Microsoft Business AI and Research
2018
0
null
null
0
null
null
null
null
null
Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, Weizhu Chen
https://iclr.cc/virtual/2018/poster/246
Attention Mechanism;Machine Comprehension;Natural Language Processing;Deep Learning
null
0
null
null
iclr
-0.866025
0
null
main
7.333333
7;7;8
null
null
FusionNet: Fusing via Fully-aware Attention with Application to Machine Comprehension
null
null
0
4
Poster
5;4;3
null
null
Department of Computer Science and Operations Research, University of Montréal, Canada; Department of Computer Science, Stanford University, USA
2018
0
null
null
0
null
null
null
null
null
null
null
representation learning;auto-encoders;3D point clouds;generative models;GANs;Gaussian Mixture Models
null
0
null
null
iclr
0.755929
0
null
main
6.333333
5;6;8
null
null
Learning Representations and Generative Models for 3D Point Clouds
null
null
0
4.666667
Workshop
4;5;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
VAE;Generative Model;Vision;Natural Language
null
0
null
null
iclr
0.5
0
null
main
4.666667
4;5;5
null
null
Generative Entity Networks: Disentangling Entitites and Attributes in Visual Scenes using Partial Natural Language Descriptions
null
null
0
4.333333
Reject
4;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
learning from demonstration;reinforcement learning;maximum entropy learning
null
0
null
null
iclr
0.866025
0
null
main
5.333333
5;5;6
null
null
Reinforcement Learning from Imperfect Demonstrations
null
null
0
4
Workshop
3;4;5
null
null
Washington State University, Pullman; NEC Laboratories America
2018
0
null
null
0
null
null
null
null
null
Bo Zong, Qi Song, Martin Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, Haifeng Chen
https://iclr.cc/virtual/2018/poster/126
Density estimation;unsupervised anomaly detection;high-dimensional data;Deep autoencoder;Gaussian mixture modeling;latent low-dimensional space
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection
null
null
0
4.333333
Poster
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
deep neural networks;short text classification;cybersecurity;domain generation algorithms;malicious domain names
null
0
null
null
iclr
0.188982
0
null
main
5.333333
4;5;7
null
null
Character Level Based Detection of DGA Domain Names
null
null
0
3.666667
Reject
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
hierarchical;tree-lstm;treelstm;syntax;composition
null
0
null
null
iclr
0
0
null
main
5
4;5;6
null
null
Jointly Learning Sentence Embeddings and Syntax with Unsupervised Tree-LSTMs
null
null
0
4
Reject
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Xu Chen, Jiang Wang, Hao Ge
https://iclr.cc/virtual/2018/poster/273
GAN;Primal-Dual Subgradient;Mode Collapse;Saddle Point
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
TRAINING GENERATIVE ADVERSARIAL NETWORKS VIA PRIMAL-DUAL SUBGRADIENT METHODS: A LAGRANGIAN PERSPECTIVE ON GAN
null
null
0
3.666667
Poster
4;3;4
null
null
Simon Fraser University, Burnaby, BC, Canada; Microsoft Research, Cambridge, UK
2018
0
null
null
0
null
null
null
null
null
Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi
https://iclr.cc/virtual/2018/poster/216
programs;source code;graph neural networks
null
0
null
null
iclr
0
0
null
main
8
8;8;8
null
null
Learning to Represent Programs with Graphs
null
null
0
4
Oral
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
optimization;vanishing gradients;shattered gradients;skip-connections
null
0
null
null
iclr
0
0
null
main
6
6;6;6
null
null
Avoiding degradation in deep feed-forward networks by phasing out skip-connections
null
null
0
4.333333
Reject
4;5;4
null
null
Carnegie Mellon University; DeepMind
2018
0
null
null
0
null
null
null
null
null
Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
https://iclr.cc/virtual/2018/poster/45
deep learning;architecture search
null
0
null
null
iclr
0.5
0
null
main
6.666667
6;6;8
null
null
Hierarchical Representations for Efficient Architecture Search
null
null
0
3.666667
Poster
3;4;4
null
null
The University of Tokyo
2018
0
null
null
0
null
null
null
null
null
Raphael Shu, Hideki Nakayama
https://iclr.cc/virtual/2018/poster/242
natural language processing;word embedding;compression;deep learning
null
0
null
null
iclr
0
0
null
main
7
6;7;8
null
null
Compressing Word Embeddings via Deep Compositional Code Learning
null
null
0
4
Poster
4;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
null
null
0
null
null
iclr
0.866025
0
null
main
4.666667
4;4;6
null
null
The Context-Aware Learner
null
null
0
4
Reject
4;3;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Few-Shot Learning;Neural Network Understanding;Visual Concepts
null
0
null
null
iclr
-0.755929
0
null
main
5.333333
4;5;7
null
null
Unleashing the Potential of CNNs for Interpretable Few-Shot Learning
null
null
0
4.333333
Reject
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, Thomas L Griffiths
https://iclr.cc/virtual/2018/poster/313
meta-learning;learning to learn;hierarchical Bayes;approximate Bayesian methods
null
0
null
null
iclr
0
0
null
main
6.666667
6;7;7
null
null
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
null
null
0
3
Poster
3;3;3
null
null
null
2018
0
null
null
0
null
null
null
null
null
Guillaume Bellec, David Kappel, Wolfgang Maass, Robert Legenstein
https://iclr.cc/virtual/2018/poster/291
deep learning;pruning;LSTM;convolutional networks;recurrent neural network;sparse networks;neuromorphic hardware;energy efficient computing;low memory hardware;stochastic differential equation;fokker-planck equation
null
0
null
null
iclr
-0.755929
0
null
main
6.333333
5;6;8
null
null
Deep Rewiring: Training very sparse deep networks
null
null
0
4.333333
Poster
5;4;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
3D fMRI data;Deep Learning;Generative Adversarial Network;Classification
null
0
null
null
iclr
0.981981
0
null
main
6.333333
5;6;8
null
null
Hallucinating brains with artificial brains
null
null
0
4
Reject
3;4;5
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
graph topology;GAN;network science;hierarchical learning
null
0
null
null
iclr
0.5
0
null
main
3.666667
3;4;4
null
null
Graph Topological Features via GAN
null
null
0
4.333333
Reject
4;5;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
Sanjeev Arora, Andrej Risteski, Yi Zhang
https://iclr.cc/virtual/2018/poster/72
Generative Adversarial Networks;mode collapse;birthday paradox;support size estimation
null
0
null
null
iclr
-0.5
0
null
main
6.666667
6;7;7
null
null
Do GANs learn the distribution? Some Theory and Empirics
null
null
0
3.666667
Poster
4;3;4
null
null
null
2018
0
null
null
0
null
null
null
null
null
null
null
Machine learning;Neural networks;Sparse neural networks;Pre-defined sparsity;Scatter;Connectivity patterns;Adjacency matrix;Parameter Reduction;Morse code
null
0
null
null
iclr
0
0
null
main
4.333333
4;4;5
null
null
Characterizing Sparse Connectivity Patterns in Neural Networks
null
null
0
3
Reject
3;3;3
null

paperlists Dataset

Dataset Details

This dataset contains the list of scientific papers accepted at one of these conferences:

  • CVPR (Computer Vision and Pattern Recognition)
  • ICCV (International Conference on Computer Vision)
  • ECCV (European Conference on Computer Vision)
  • CoRL (Conference on Robot Learning)
  • ICLR (International Conference on Learning Representations)
  • ICML (International Conference on Machine Learning)
  • NeurIPS (Conference on Neural Information Processing Systems)
  • SIGGRAPH (Special Interest Group on Graphics and Interactive Techniques)
  • EMNLP (Conference on Empirical Methods in Natural Language Processing)

From 2006 to the present (depending on the conferences)

Dataset Sources

The data comes from the paperlists repository

Uses

This dataset can be used to produce statistics on papers accepted at TOP-tier AI conferences

Data Collection and Processing

Please note, this is a raw dataset that has undergone little transformation. All fields are original except youtube which was merged into video and id, psid and ssid* which were deleted

Bias, Risks, and Limitations

The data is limited both by conference type and by year They are raw and have a lot of unspecified value

Citation

Paper Copilot

Downloads last month
33