Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K<n<100K
Tags:
emotion-classification
License:
import json | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """\ | |
@inproceedings{saravia-etal-2018-carer, | |
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition", | |
author = "Saravia, Elvis and | |
Liu, Hsien-Chi Toby and | |
Huang, Yen-Hao and | |
Wu, Junlin and | |
Chen, Yi-Shin", | |
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", | |
month = oct # "-" # nov, | |
year = "2018", | |
address = "Brussels, Belgium", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/D18-1404", | |
doi = "10.18653/v1/D18-1404", | |
pages = "3687--3697", | |
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.", | |
} | |
""" | |
_DESCRIPTION = """ | |
Emotion is a dataset of English Twitter messages with six basic emotions: | |
anger, fear, joy, love, sadness, and surprise. For more detailed information | |
please refer to the paper. | |
""" | |
_HOMEPAGE = "https://huggingface.co/datasets/jeffnyman/emotions" | |
_LICENSE = "cc-by-sa-4.0" | |
_URLS = { | |
"split": { | |
"train": "data/train.jsonl.gz", | |
"validation": "data/validation.jsonl.gz", | |
"test": "data/test.jsonl.gz", | |
}, | |
"unsplit": { | |
"train": "data/data.jsonl.gz", | |
}, | |
} | |
class Emotions(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="split", | |
version=VERSION, | |
description="Dataset split in train, validation and test", | |
), | |
datasets.BuilderConfig( | |
name="unsplit", version=VERSION, description="Unsplit dataset" | |
), | |
] | |
DEFAULT_CONFIG_NAME = "split" | |
def _info(self): | |
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"] | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=class_names), | |
} | |
), | |
supervised_keys=("text", "label"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE, | |
task_templates=[ | |
TextClassification(text_column="text", label_column="label") | |
], | |
) | |
def _split_generators(self, dl_manager): | |
paths = dl_manager.download_and_extract(_URLS[self.config.name]) | |
if self.config.name == "split": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": paths["validation"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]} | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]} | |
) | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
for idx, line in enumerate(f): | |
example = json.loads(line) | |
yield idx, example | |