metadata
license: cc-by-4.0
dataset_info:
features:
- name: caption
dtype: string
- name: dialog
sequence:
sequence: string
- name: image_path
dtype: string
- name: global_image_id
dtype: string
- name: anns_id
dtype: string
splits:
- name: train
num_bytes: 77657548
num_examples: 123287
- name: test
num_bytes: 3495490
num_examples: 8000
- name: validation
num_bytes: 1408883
num_examples: 2064
download_size: 34814702
dataset_size: 82561921
Usage:
from dataclasses import dataclass
import datasets
# load and path setting
ds_visdial = datasets.load_dataset('jxu124/visdial')
path_map = {
"coco/train2014": f"/datasets/coco/train2014",
"coco/val2014": f"/datasets/coco/val2014",
"visdial/VisualDialog_test2018": f"/datasets/visdial/VisualDialog_test2018",
"visdial/VisualDialog_val2018": f"/datasets/visdial/VisualDialog_val2018"
}
# apply to your datasets
@dataclass
class ReplaceImagePath():
path_map: {}
def __call__(self, features):
for k, v in self.path_map.items():
features['image'] = features['image'].replace(k, v)
return features
ds_visdial = ds_visdial.map(ReplaceImagePath(path_map=path_map)).cast_column("image", datasets.Image())