name
stringlengths
1
152
class_name
stringlengths
1
51
class_bases
stringlengths
0
159
is_member
bool
2 classes
args
stringlengths
0
804
class_docstr
stringlengths
4
8.19k
class_docstr_tok
stringlengths
2
11.6k
docstr
stringlengths
0
11.4k
docstr_tok
stringlengths
2
13.4k
returns
stringlengths
0
260
code
stringlengths
21
52.4k
code_tok
stringlengths
33
92.8k
lstart
int64
1
1.75k
lend
int64
5
1.75k
raises
stringclasses
16 values
filename
stringlengths
5
66
file_path
stringlengths
12
161
imports
stringlengths
0
1.77k
total_objects
int64
15
15
num_classes
float64
1
7
num_imports
int64
0
14
num_functions
int64
0
15
num_all_bases
float64
0
9
num_methods
float64
1
14
num_bases
float64
1
7
label_desc
stringlengths
69
1.05k
label_desc_len
int64
69
1.05k
label_id
stringclasses
15 values
__index_level_0__
int64
468
2.35M
_fit_sklearn_model_with_active_run
global
null
false
pandas_df
null
null
null
null
mlflow
def _fit_sklearn_model_with_active_run(pandas_df): run_id = mlflow.active_run().info.run_id _fit_sklearn(pandas_df) return mlflow.get_run(run_id)
["def","_fit_sklearn_model_with_active_run","(","pandas_df",")",":","run_id","=","mlflow.active_run","(",")",".info.run_id","_fit_sklearn","(","pandas_df",")","return","mlflow.get_run","(","run_id",")"]
32
35
null
test_spark_datasource_autologging_crossframework.py
mlflow/tests/spark/autologging/datasource/test_spark_datasource_autologging_crossframework.py
import time import numpy import pytest from sklearn.linear_model import LinearRegression import mlflow import mlflow.spark from tests.spark.autologging.utils import _assert_spark_data_logged
15
null
7
8
null
null
null
Use image node_id 3 for calling a global function with example usage: _fit_sklearn_model_with_active_run(pandas_df) and returns: mlflow
135
node_id 3
1,357,874
test_super
TestGaussianNoise
unittest
true
self
A unittest class for testing the GaussianNoise postprocessor.
["A","unittest","class","for","testing","the","GaussianNoise","postprocessor","."]
null
null
null
def test_super(self): gan = GaussianNoise(scale=0.1) self.assertTrue(gan.is_fitted) self.assertFalse(gan._apply_fit) self.assertTrue(gan._apply_predict) gan.fit(preds=np.array([0.1, 0.2, 0.3]))
["def","test_super","(","self",")",":","gan","=","GaussianNoise","(","scale=0.1",")","self.assertTrue","(","gan.is_fitted",")","self.assertFalse","(","gan._apply_fit",")","self.assertTrue","(","gan._apply_predict",")","gan.fit","(","preds=np.array","(","[","0.1",",","0.2",",","0.3","]",")",")"]
104
109
null
test_gaussian_noise.py
adversarial-robustness-toolbox/tests/defences/test_gaussian_noise.py
import logging import unittest import numpy from art.defences.postprocessor import GaussianNoise from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 7 for calling the TestGaussianNoise obj's underlying member method code with example usage: obj.test_super() without return types
147
node_id 7
235,295
setUpClass
TestHighConfidence
unittest
true
cls
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
null
null
null
def setUpClass(cls): (x_train, y_train), (x_test, y_test), _, _ = load_dataset("mnist") cls.mnist = (x_train, y_train), (x_test, y_test)
["def","setUpClass","(","cls",")",":","(","x_train",",","y_train",")",",","(","x_test",",","y_test",")",",","_",",","_","=","load_dataset","(","``","mnist","''",")","cls.mnist","=","(","x_train",",","y_train",")",",","(","x_test",",","y_test",")"]
37
39
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 1 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.setUpClass(cls) without return types
151
node_id 1
235,296
test_ThompsonSamplerInfeasible
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def test_ThompsonSamplerInfeasible(self) -> None: generator = ThompsonSampler(min_weight=0.9) generator.fit( # pyre-fixme[6]: For 1st param expected `List[List[List[Union[None, # bool, float, int, str]]]]` but got `List[List[List[int]]]`. Xs=self.Xs, # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) with self.assertRaises(ModelError): generator.gen( n=3, # pyre-fixme[6]: For 2nd param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, objective_weights=np.ones(1), )
["def","test_ThompsonSamplerInfeasible","(","self",")","-",">","None",":","generator","=","ThompsonSampler","(","min_weight=0.9",")","generator.fit","(","#","pyre-fixme","[","6","]",":","For","1st","param","expected","`","List","[","List","[","List","[","Union","[","None",",","#","bool",",","float",",","int",",","str","]","]","]","]","`","but","got","`","List","[","List","[","List","[","int","]","]","]","`",".","Xs=self.Xs",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","with","self.assertRaises","(","ModelError",")",":","generator.gen","(","n=3",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","objective_weights=np.ones","(","1",")",",",")"]
174
198
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 6 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.test_ThompsonSamplerInfeasible() without return types
169
node_id 6
9,540
_maybe_clause
global
null
false
clause
null
null
null
null
unknown
def _maybe_clause(clause: Optional[str]) -> Sequence[str]: return [clause] if clause is not None else []
["def","_maybe_clause","(","clause",":","Optional","[","str","]",")","-",">","Sequence","[","str","]",":","return","[","clause","]","if","clause","is","not","None","else","[","]"]
40
41
null
store_ext.py
tfx/tfx/orchestration/portable/mlmd/store_ext.py
import collections import itertools from typing import Callable, Mapping, Optional, Sequence, Union from tfx.dsl.compiler import compiler_utils from tfx.dsl.compiler import constants from tfx.orchestration.experimental.core import constants from tfx.orchestration.portable.mlmd import event_lib from tfx.orchestration.portable.mlmd import filter_query_builder import ml_metadata
15
null
9
6
null
null
null
Use image node_id 2 for calling a global function with example usage: _maybe_clause(clause) and returns: unknown
112
node_id 2
2,198,856
__init__
EventSievesConfiguration
SievesConfiguration
true
self
null
null
null
null
EventSievesConfiguration
def __init__(self): super(EventSievesConfiguration, self).__init__() self.run_evaluation = True self.sieves_order = [ (RelationType.SAME_HEAD_LEMMA, 1.0), (RelationType.EXACT_STRING, 1.0), (RelationType.WIKIPEDIA_DISAMBIGUATION, 0.1), (RelationType.WORD_EMBEDDING_MATCH, 0.7), (RelationType.WIKIPEDIA_REDIRECT_LINK, 0.1), (RelationType.FUZZY_HEAD_FIT, 0.5), (RelationType.FUZZY_FIT, 1.0), (RelationType.WITHIN_DOC_COREF, 1.0), (RelationType.WIKIPEDIA_TITLE_PARENTHESIS, 0.1), (RelationType.WIKIPEDIA_BE_COMP, 0.1), (RelationType.WIKIPEDIA_CATEGORY, 0.1), (RelationType.VERBOCEAN_MATCH, 0.1), (RelationType.WORDNET_DERIVATIONALLY, 1.0), ]
["def","__init__","(","self",")",":","super","(","EventSievesConfiguration",",","self",")",".__init__","(",")","self.run_evaluation","=","True","self.sieves_order","=","[","(","RelationType.SAME_HEAD_LEMMA",",","1.0",")",",","(","RelationType.EXACT_STRING",",","1.0",")",",","(","RelationType.WIKIPEDIA_DISAMBIGUATION",",","0.1",")",",","(","RelationType.WORD_EMBEDDING_MATCH",",","0.7",")",",","(","RelationType.WIKIPEDIA_REDIRECT_LINK",",","0.1",")",",","(","RelationType.FUZZY_HEAD_FIT",",","0.5",")",",","(","RelationType.FUZZY_FIT",",","1.0",")",",","(","RelationType.WITHIN_DOC_COREF",",","1.0",")",",","(","RelationType.WIKIPEDIA_TITLE_PARENTHESIS",",","0.1",")",",","(","RelationType.WIKIPEDIA_BE_COMP",",","0.1",")",",","(","RelationType.WIKIPEDIA_CATEGORY",",","0.1",")",",","(","RelationType.VERBOCEAN_MATCH",",","0.1",")",",","(","RelationType.WORDNET_DERIVATIONALLY",",","1.0",")",",","]"]
59
78
null
sieves_config.py
nlp-architect/nlp_architect/models/cross_doc_coref/sieves_config.py
from typing import List, Tuple from nlp_architect.data.cdc_resources.relations.relation_types_enums import RelationType
15
3
2
0
3
1
1
Use image node_id 1 to create a new EventSievesConfiguration object from inherited base classes: SievesConfiguration with example: obj = EventSievesConfiguration()
163
node_id 1
1,443,098
simple_segmentation_example
global
null
false
null
null
null
null
null
def simple_segmentation_example(): "Perfect results!" parameters = legion_parameters() parameters.eps = 0.02 parameters.alpha = 0.005 parameters.betta = 0.1 parameters.gamma = 7.0 parameters.teta = 0.9 parameters.lamda = 0.1 parameters.teta_x = -0.5 parameters.teta_p = 7.0 parameters.Wz = 0.7 parameters.mu = 0.01 parameters.fi = 3.0 parameters.teta_xz = 0.1 parameters.teta_zx = 0.1 parameters.ENABLE_POTENTIONAL = False template_dynamic_legion( 81, 2500, 2500, conn_type=conn_type.GRID_FOUR, params=parameters, stimulus=[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, ], separate_repr=[ [0, 1, 2, 9, 10, 11, 18, 19, 20], [ 14, 15, 16, 17, 23, 24, 25, 26, 33, 34, 35, 42, 43, 44, 51, 52, 53, ], [ 45, 46, 47, 48, 54, 55, 56, 57, 63, 64, 65, 66, 72, 73, 74, 75, ], ], )
["def","simple_segmentation_example","(",")",":","``","Perfect","results","!","''","parameters","=","legion_parameters","(",")","parameters.eps","=","0.02","parameters.alpha","=","0.005","parameters.betta","=","0.1","parameters.gamma","=","7.0","parameters.teta","=","0.9","parameters.lamda","=","0.1","parameters.teta_x","=","-0.5","parameters.teta_p","=","7.0","parameters.Wz","=","0.7","parameters.mu","=","0.01","parameters.fi","=","3.0","parameters.teta_xz","=","0.1","parameters.teta_zx","=","0.1","parameters.ENABLE_POTENTIONAL","=","False","template_dynamic_legion","(","81",",","2500",",","2500",",","conn_type=conn_type.GRID_FOUR",",","params=parameters",",","stimulus=","[","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","0",",","1",",","1",",","1",",","0",",","0",",","1",",","1",",","1",",","1",",","1",",","1",",","1",",","0",",","0",",","1",",","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","0",",","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","0",",","1",",","1",",","1",",","1",",","1",",","1",",","1",",","0",",","0",",","1",",","1",",","1",",","1",",","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","1",",","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","1",",","1",",","1",",","1",",","0",",","0",",","0",",","0",",","0",",","]",",","separate_repr=","[","[","0",",","1",",","2",",","9",",","10",",","11",",","18",",","19",",","20","]",",","[","14",",","15",",","16",",","17",",","23",",","24",",","25",",","26",",","33",",","34",",","35",",","42",",","43",",","44",",","51",",","52",",","53",",","]",",","[","45",",","46",",","47",",","48",",","54",",","55",",","56",",","57",",","63",",","64",",","65",",","66",",","72",",","73",",","74",",","75",",","]",",","]",",",")"]
94
126
null
legion_examples.py
pyclustering/pyclustering/nnet/examples/legion_examples.py
from pyclustering.utils import draw_dynamics from pyclustering.nnet.legion import legion_network, legion_parameters from pyclustering.nnet import *
15
null
3
12
null
null
null
Use image node_id 12 for calling a global function with example usage: simple_segmentation_example() without return types
121
node_id 12
1,634,375
forward
ConstantGate
torch.nn
true
self,inp
null
null
null
null
idx, score
def forward(self, inp): idx = torch.zeros( (inp.shape[0], self.top_k), dtype=torch.int64, device=inp.device, ) score = ( torch.ones((inp.shape[0], 1, self.top_k), device=inp.device) / 2 ) return idx, score
["def","forward","(","self",",","inp",")",":","idx","=","torch.zeros","(","(","inp.shape","[","0","]",",","self.top_k",")",",","dtype=torch.int64",",","device=inp.device",",",")","score","=","(","torch.ones","(","(","inp.shape","[","0","]",",","1",",","self.top_k",")",",","device=inp.device",")","\/","2",")","return","idx",",","score"]
16
20
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
1
7
4
1
2
1
Use image node_id 2 for calling the ConstantGate obj's underlying member method code with example usage: obj.forward(inp) and returns: idx, score
146
node_id 2
2,201,994
__init__
ConstantGate
torch.nn
true
self,d_model,num_expert,world_size,top_k
null
null
null
null
ConstantGate
def __init__(self, d_model, num_expert, world_size, top_k=1): super().__init__() self.top_k = top_k
["def","__init__","(","self",",","d_model",",","num_expert",",","world_size",",","top_k=1",")",":","super","(",")",".__init__","(",")","self.top_k","=","top_k"]
12
14
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
1
7
4
1
2
1
Use image node_id 1 to create a new ConstantGate object from inherited base classes: torch.nn with example: obj = ConstantGate(d_model, num_expert, world_size, top_k)
166
node_id 1
2,201,993
test_GetLastPoint
RandomModelTest
TestCase
true
self
null
null
null
null
null
def test_GetLastPoint(self) -> None: generated_points = np.array([[1, 2, 3], [4, 5, 6]]) RandomModelWithPoints = RandomModel( generated_points=generated_points ) result = RandomModelWithPoints._get_last_point() expected = torch.tensor([[4], [5], [6]]) comparison = result == expected # pyre-fixme[16]: `bool` has no attribute `any`. self.assertEqual(comparison.any(), True)
["def","test_GetLastPoint","(","self",")","-",">","None",":","generated_points","=","np.array","(","[","[","1",",","2",",","3","]",",","[","4",",","5",",","6","]","]",")","RandomModelWithPoints","=","RandomModel","(","generated_points=generated_points",")","result","=","RandomModelWithPoints._get_last_point","(",")","expected","=","torch.tensor","(","[","[","4","]",",","[","5","]",",","[","6","]","]",")","comparison","=","result","==","expected","#","pyre-fixme","[","16","]",":","`","bool","`","has","no","attribute","`","any","`",".","self.assertEqual","(","comparison.any","(",")",",","True",")"]
74
81
null
test_random.py
Ax/ax/models/tests/test_random.py
import numpy import torch from ax.models.random.base import RandomModel from ax.utils.common.testutils import TestCase from ax.utils.common.typeutils import not_none
15
1
5
0
1
8
1
Use image node_id 8 for calling the RandomModelTest obj's underlying member method code with example usage: obj.test_GetLastPoint() without return types
152
node_id 8
9,517
get_config
global
null
false
null
null
null
null
config, args
def get_config(): parser = argparse.ArgumentParser( "Global Config Argument Parser", allow_abbrev=False ) parser.add_argument( "--config_yaml", required=True, type=str, help="the configuration file for this experiment.", ) parser.add_argument( "--resume", type=str, help="a specified logging path to resume training.\ It will fall back to run from initialization if no latest checkpoint are found.", ) parser.add_argument( "--test", type=str, help="a specified logging path to test" ) args, _ = parser.parse_known_args() config = get_user_config(args.config_yaml) add_cfg_to_argparser(config, parser) args = parser.parse_args() update_cfg_with_argparser(config, args) check_config_conflicts(config) # print(config) return config, args
["def","get_config","(",")",":","parser","=","argparse.ArgumentParser","(","``","Global","Config","Argument","Parser","''",",","allow_abbrev=False",")","parser.add_argument","(","``","--","config_yaml","''",",","required=True",",","type=str",",","help=","''","the","configuration","file","for","this","experiment",".","``",",",")","parser.add_argument","(","``","--","resume","''",",","type=str",",","help=","''","a","specified","logging","path","to","resume","training.\\","It","will","fall","back","to","run","from","initialization","if","no","latest","checkpoint","are","found",".","``",",",")","parser.add_argument","(","``","--","test","''",",","type=str",",","help=","''","a","specified","logging","path","to","test","''",")","args",",","_","=","parser.parse_known_args","(",")","config","=","get_user_config","(","args.config_yaml",")","add_cfg_to_argparser","(","config",",","parser",")","args","=","parser.parse_args","(",")","update_cfg_with_argparser","(","config",",","args",")","check_config_conflicts","(","config",")","#","print","(","config",")","return","config",",","args"]
123
138
null
config.py
OpenPrompt/openprompt/config.py
import argparse from yacs.config import CfgNode import sys from openprompt.utils.utils import check_config_conflicts from .default_config import get_default_config from openprompt.utils.logging import logger import os
15
null
7
8
null
null
null
Use image node_id 8 for calling a global function with example usage: get_config() and returns: config, args
109
node_id 8
152,524
save_config_to_yaml
global
null
false
config
null
null
null
null
null
def save_config_to_yaml(config): from contextlib import redirect_stdout saved_yaml_path = os.path.join(config.logging.path, "config.yaml") with open(saved_yaml_path, "w") as f: with redirect_stdout(f): print(config.dump()) logger.info("Config saved as {}".format(saved_yaml_path))
["def","save_config_to_yaml","(","config",")",":","from","contextlib","import","redirect_stdout","saved_yaml_path","=","os.path.join","(","config.logging.path",",","``","config.yaml","''",")","with","open","(","saved_yaml_path",",","``","w","''",")","as","f",":","with","redirect_stdout","(","f",")",":","print","(","config.dump","(",")",")","logger.info","(","``","Config","saved","as","{","}","''",".format","(","saved_yaml_path",")",")"]
116
121
null
config.py
OpenPrompt/openprompt/config.py
import argparse from yacs.config import CfgNode import sys from openprompt.utils.utils import check_config_conflicts from .default_config import get_default_config from openprompt.utils.logging import logger import os
15
null
7
8
null
null
null
Use image node_id 7 for calling a global function with example usage: save_config_to_yaml(config) without return types
118
node_id 7
152,523
update_cfg_with_argparser
global
null
false
cfg,args,prefix
null
null
null
null
null
def update_cfg_with_argparser(cfg, args, prefix=None): r"""To support update cfg with command line""" for key in cfg: value = cfg[key] full_key_name = ( prefix + "." + key if prefix is not None else key ) if isinstance(value, CfgNode): update_cfg_with_argparser( value, args, prefix=full_key_name ) else: v = getattr(args, full_key_name) if type(v) != type(value): raise TypeError if v != value: cfg[key] = v print( "Update key {}, value {} -> {}".format( full_key_name, value, v ) )
["def","update_cfg_with_argparser","(","cfg",",","args",",","prefix=None",")",":","r","''","''","''","To","support","update","cfg","with","command","line","''","''","''","for","key","in","cfg",":","value","=","cfg","[","key","]","full_key_name","=","(","prefix","+","``",".","''","+","key","if","prefix","is","not","None","else","key",")","if","isinstance","(","value",",","CfgNode",")",":","update_cfg_with_argparser","(","value",",","args",",","prefix=full_key_name",")","else",":","v","=","getattr","(","args",",","full_key_name",")","if","type","(","v",")","!","=","type","(","value",")",":","raise","TypeError","if","v","!","=","value",":","cfg","[","key","]","=","v","print","(","``","Update","key","{","}",",","value","{","}","-",">","{","}","''",".format","(","full_key_name",",","value",",","v",")",")"]
99
113
null
config.py
OpenPrompt/openprompt/config.py
import argparse from yacs.config import CfgNode import sys from openprompt.utils.utils import check_config_conflicts from .default_config import get_default_config from openprompt.utils.logging import logger import os
15
null
7
8
null
null
null
Use image node_id 6 for calling a global function with example usage: update_cfg_with_argparser(cfg, args, prefix) without return types
135
node_id 6
152,522
test_ConvertBounds
RandomModelTest
TestCase
true
self
null
null
null
null
null
def test_ConvertBounds(self) -> None: bounds = [(1.0, 2.0), (3.0, 4.0), (5.0, 6.0)] bounds_result = self.random_model._convert_bounds(bounds) bounds_expected = torch.tensor( [[1, 3, 5], [2, 4, 6]], dtype=torch.double ) bounds_comparison = bounds_result == bounds_expected # pyre-fixme[16]: `bool` has no attribute `any`. self.assertEqual(bounds_comparison.any(), True) # pyre-fixme[6]: For 1st param expected `List[Tuple[float, float]]` but got # `None`. self.assertEqual(self.random_model._convert_bounds(None), None)
["def","test_ConvertBounds","(","self",")","-",">","None",":","bounds","=","[","(","1.0",",","2.0",")",",","(","3.0",",","4.0",")",",","(","5.0",",","6.0",")","]","bounds_result","=","self.random_model._convert_bounds","(","bounds",")","bounds_expected","=","torch.tensor","(","[","[","1",",","3",",","5","]",",","[","2",",","4",",","6","]","]",",","dtype=torch.double",")","bounds_comparison","=","bounds_result","==","bounds_expected","#","pyre-fixme","[","16","]",":","`","bool","`","has","no","attribute","`","any","`",".","self.assertEqual","(","bounds_comparison.any","(",")",",","True",")","#","pyre-fixme","[","6","]",":","For","1st","param","expected","`","List","[","Tuple","[","float",",","float","]","]","`","but","got","#","`","None","`",".","self.assertEqual","(","self.random_model._convert_bounds","(","None",")",",","None",")"]
63
72
null
test_random.py
Ax/ax/models/tests/test_random.py
import numpy import torch from ax.models.random.base import RandomModel from ax.utils.common.testutils import TestCase from ax.utils.common.typeutils import not_none
15
1
5
0
1
8
1
Use image node_id 7 for calling the RandomModelTest obj's underlying member method code with example usage: obj.test_ConvertBounds() without return types
153
node_id 7
9,516
test_ConvertInequalityConstraints
RandomModelTest
TestCase
true
self
null
null
null
null
null
def test_ConvertInequalityConstraints(self) -> None: A = np.array([[1, 2], [3, 4]]) b = np.array([[5], [6]]) A_result, b_result = not_none( self.random_model._convert_inequality_constraints((A, b)) ) A_expected = torch.tensor([[1, 2], [3, 4]], dtype=torch.double) b_expected = torch.tensor([[5], [6]], dtype=torch.double) A_comparison = A_result == A_expected b_comparison = b_result == b_expected self.assertEqual(A_comparison.any(), True) self.assertEqual(b_comparison.any(), True) self.assertEqual( self.random_model._convert_inequality_constraints(None), None )
["def","test_ConvertInequalityConstraints","(","self",")","-",">","None",":","A","=","np.array","(","[","[","1",",","2","]",",","[","3",",","4","]","]",")","b","=","np.array","(","[","[","5","]",",","[","6","]","]",")","A_result",",","b_result","=","not_none","(","self.random_model._convert_inequality_constraints","(","(","A",",","b",")",")",")","A_expected","=","torch.tensor","(","[","[","1",",","2","]",",","[","3",",","4","]","]",",","dtype=torch.double",")","b_expected","=","torch.tensor","(","[","[","5","]",",","[","6","]","]",",","dtype=torch.double",")","A_comparison","=","A_result","==","A_expected","b_comparison","=","b_result","==","b_expected","self.assertEqual","(","A_comparison.any","(",")",",","True",")","self.assertEqual","(","b_comparison.any","(",")",",","True",")","self.assertEqual","(","self.random_model._convert_inequality_constraints","(","None",")",",","None",")"]
49
61
null
test_random.py
Ax/ax/models/tests/test_random.py
import numpy import torch from ax.models.random.base import RandomModel from ax.utils.common.testutils import TestCase from ax.utils.common.typeutils import not_none
15
1
5
0
1
8
1
Use image node_id 6 for calling the RandomModelTest obj's underlying member method code with example usage: obj.test_ConvertInequalityConstraints() without return types
168
node_id 6
9,515
test_ConvertEqualityConstraints
RandomModelTest
TestCase
true
self
null
null
null
null
null
def test_ConvertEqualityConstraints(self) -> None: fixed_features = {3: 0.7, 1: 0.5} d = 4 C, c = not_none( self.random_model._convert_equality_constraints( d, fixed_features ) ) c_expected = torch.tensor([[0.5], [0.7]], dtype=torch.double) C_expected = torch.tensor( [[0, 1, 0, 0], [0, 0, 0, 1]], dtype=torch.double ) c_comparison = c == c_expected C_comparison = C == C_expected self.assertEqual(c_comparison.any(), True) self.assertEqual(C_comparison.any(), True) self.assertEqual( self.random_model._convert_equality_constraints(d, None), None )
["def","test_ConvertEqualityConstraints","(","self",")","-",">","None",":","fixed_features","=","{","3",":","0.7",",","1",":","0.5","}","d","=","4","C",",","c","=","not_none","(","self.random_model._convert_equality_constraints","(","d",",","fixed_features",")",")","c_expected","=","torch.tensor","(","[","[","0.5","]",",","[","0.7","]","]",",","dtype=torch.double",")","C_expected","=","torch.tensor","(","[","[","0",",","1",",","0",",","0","]",",","[","0",",","0",",","0",",","1","]","]",",","dtype=torch.double",")","c_comparison","=","c","==","c_expected","C_comparison","=","C","==","C_expected","self.assertEqual","(","c_comparison.any","(",")",",","True",")","self.assertEqual","(","C_comparison.any","(",")",",","True",")","self.assertEqual","(","self.random_model._convert_equality_constraints","(","d",",","None",")",",","None",")"]
35
47
null
test_random.py
Ax/ax/models/tests/test_random.py
import numpy import torch from ax.models.random.base import RandomModel from ax.utils.common.testutils import TestCase from ax.utils.common.typeutils import not_none
15
1
5
0
1
8
1
Use image node_id 5 for calling the RandomModelTest obj's underlying member method code with example usage: obj.test_ConvertEqualityConstraints() without return types
166
node_id 5
9,514
add_cfg_to_argparser
global
null
false
cfg,parser,prefix
null
null
null
null
null
def add_cfg_to_argparser(cfg, parser, prefix=None): r"""To support argument parser style in addition to yaml style""" for key in cfg: value = cfg[key] full_key_name = ( prefix + "." + key if prefix is not None else key ) if isinstance(value, CfgNode): add_cfg_to_argparser( value, parser=parser, prefix=full_key_name ) else: if type(value) in [str, int, float]: parser.add_argument( "--" + full_key_name, type=type(value), default=value, ) elif type(value) in [tuple, list]: parser.add_argument( "--" + full_key_name, type=type(value), default=value, nargs="+", ) elif type(value) == bool: parser.add_argument( "--" + full_key_name, action="store_{}".format(not value).lower(), ) elif type(value) == type(None): parser.add_argument( "--" + full_key_name, default=None ) else: raise NotImplementedError( "The type of config value is not supported" )
["def","add_cfg_to_argparser","(","cfg",",","parser",",","prefix=None",")",":","r","''","''","''","To","support","argument","parser","style","in","addition","to","yaml","style","''","''","''","for","key","in","cfg",":","value","=","cfg","[","key","]","full_key_name","=","(","prefix","+","``",".","''","+","key","if","prefix","is","not","None","else","key",")","if","isinstance","(","value",",","CfgNode",")",":","add_cfg_to_argparser","(","value",",","parser=parser",",","prefix=full_key_name",")","else",":","if","type","(","value",")","in","[","str",",","int",",","float","]",":","parser.add_argument","(","``","--","''","+","full_key_name",",","type=type","(","value",")",",","default=value",",",")","elif","type","(","value",")","in","[","tuple",",","list","]",":","parser.add_argument","(","``","--","''","+","full_key_name",",","type=type","(","value",")",",","default=value",",","nargs=","''","+","''",",",")","elif","type","(","value",")","==","bool",":","parser.add_argument","(","``","--","''","+","full_key_name",",","action=","''","store_","{","}","''",".format","(","not","value",")",".lower","(",")",",",")","elif","type","(","value",")","==","type","(","None",")",":","parser.add_argument","(","``","--","''","+","full_key_name",",","default=None",")","else",":","raise","NotImplementedError","(","``","The","type","of","config","value","is","not","supported","''",")"]
78
96
null
config.py
OpenPrompt/openprompt/config.py
import argparse from yacs.config import CfgNode import sys from openprompt.utils.utils import check_config_conflicts from .default_config import get_default_config from openprompt.utils.logging import logger import os
15
null
7
8
null
null
null
Use image node_id 5 for calling a global function with example usage: add_cfg_to_argparser(cfg, parser, prefix) without return types
132
node_id 5
152,521
_get_node_live_artifacts
global
null
false
store
null
null
null
null
store
def _get_node_live_artifacts( store: mlmd.MetadataStore, *, pipeline_id: str, node_id: str, pipeline_run_id: Optional[str] = None, ) -> Sequence[mlmd.proto.Artifact]: """Gets all LIVE node artifacts. Args: store: A MetadataStore object. pipeline_id: The pipeline ID. node_id: The node ID. pipeline_run_id: The pipeline run ID that the node belongs to. Only artifacts from the specified pipeline run are returned if specified. Returns: A list of LIVE artifacts of the given pipeline node. """ artifact_state_filter_query = f"state = {mlmd.proto.Artifact.State.Name(mlmd.proto.Artifact.LIVE)}" node_context_name = compiler_utils.node_context_name( pipeline_id, node_id ) node_filter_query = q.And( [ f'contexts_0.type = "{constants.NODE_CONTEXT_TYPE_NAME}"', f'contexts_0.name = "{node_context_name}"', ] ) artifact_filter_query = q.And( [ node_filter_query, artifact_state_filter_query, ] ) if pipeline_run_id: artifact_filter_query.append( q.And( [ f'contexts_1.type = "{constants.PIPELINE_RUN_CONTEXT_TYPE_NAME}"', f'contexts_1.name = "{pipeline_run_id}"', ] ) ) return store.get_artifacts( list_options=mlmd.ListOptions( filter_query=str(artifact_filter_query) ) )
["def","_get_node_live_artifacts","(","store",":","mlmd.MetadataStore",",","*",",","pipeline_id",":","str",",","node_id",":","str",",","pipeline_run_id",":","Optional","[","str","]","=","None",",",")","-",">","Sequence","[","mlmd.proto.Artifact","]",":","``","''","''","Gets","all","LIVE","node","artifacts",".","Args",":","store",":","A","MetadataStore","object",".","pipeline_id",":","The","pipeline","ID",".","node_id",":","The","node","ID",".","pipeline_run_id",":","The","pipeline","run","ID","that","the","node","belongs","to",".","Only","artifacts","from","the","specified","pipeline","run","are","returned","if","specified",".","Returns",":","A","list","of","LIVE","artifacts","of","the","given","pipeline","node.","``","''","''","artifact_state_filter_query","=","f","''","state","=","{","mlmd.proto.Artifact.State.Name","(","mlmd.proto.Artifact.LIVE",")","}","''","node_context_name","=","compiler_utils.node_context_name","(","pipeline_id",",","node_id",")","node_filter_query","=","q.And","(","[","f'contexts_0.type","=","``","{","constants.NODE_CONTEXT_TYPE_NAME","}","''","'",",","f'contexts_0.name","=","``","{","node_context_name","}","''","'",",","]",")","artifact_filter_query","=","q.And","(","[","node_filter_query",",","artifact_state_filter_query",",","]",")","if","pipeline_run_id",":","artifact_filter_query.append","(","q.And","(","[","f'contexts_1.type","=","``","{","constants.PIPELINE_RUN_CONTEXT_TYPE_NAME","}","''","'",",","f'contexts_1.name","=","``","{","pipeline_run_id","}","''","'",",","]",")",")","return","store.get_artifacts","(","list_options=mlmd.ListOptions","(","filter_query=str","(","artifact_filter_query",")",")",")"]
44
87
null
store_ext.py
tfx/tfx/orchestration/portable/mlmd/store_ext.py
import collections import itertools from typing import Callable, Mapping, Optional, Sequence, Union from tfx.dsl.compiler import compiler_utils from tfx.dsl.compiler import constants from tfx.orchestration.experimental.core import constants from tfx.orchestration.portable.mlmd import event_lib from tfx.orchestration.portable.mlmd import filter_query_builder import ml_metadata
15
null
9
6
null
null
null
Use image node_id 3 for calling a global function with example usage: _get_node_live_artifacts(store) and returns: store
120
node_id 3
2,198,857
get_node_executions
global
null
false
store
null
null
null
null
store
def get_node_executions( store: mlmd.MetadataStore, *, pipeline_id: str, node_id: str, pipeline_run_id: Optional[str] = None, order_by: mlmd.OrderByField = mlmd.OrderByField.ID, is_asc: bool = True, execution_states: Optional[ Sequence["mlmd.proto.Execution.State"] ] = None, min_last_update_time_since_epoch: Optional[int] = None, ) -> Sequence[mlmd.proto.Execution]: """Gets all node executions. Args: store: A MetadataStore object. pipeline_id: The pipeline ID. node_id: The node ID. pipeline_run_id: The pipeline run ID that the node belongs to. Only executions from the specified pipeline run are returned if specified. order_by: The field of execution to order results by. is_asc: If True, the results will be returned in the ascending order. If False, the result will be returned in the descending order. execution_states: The MLMD execution state(s) to pull LIVE artifacts from. If not specified or is empty, will consider all MLMD execution states. min_last_update_time_since_epoch: The minimum update time of MLMD executions in the format of milliseconds since the unix epoch. If not specified, will consider all MLMD executions. Returns: A list of executions of the given pipeline node. """ node_context_name = compiler_utils.node_context_name( pipeline_id, node_id ) node_executions_filter_queries = [] node_executions_filter_queries.append( q.And( [ f'contexts_0.type = "{constants.NODE_CONTEXT_TYPE_NAME}"', f'contexts_0.name = "{node_context_name}"', ] ) ) if pipeline_run_id: node_executions_filter_queries.append( q.And( [ f'contexts_1.type = "{constants.PIPELINE_RUN_CONTEXT_TYPE_NAME}"', f'contexts_1.name = "{pipeline_run_id}"', ] ) ) if execution_states: states_str = ",".join( [ mlmd.proto.Execution.State.Name(state) for state in execution_states ] ) states_filter_query = f"last_known_state IN ({states_str})" node_executions_filter_queries.append(states_filter_query) if min_last_update_time_since_epoch: node_executions_filter_queries.append( f"last_update_time_since_epoch >= {min_last_update_time_since_epoch}" ) return store.get_executions( list_options=mlmd.ListOptions( filter_query=str(q.And(node_executions_filter_queries)), order_by=order_by, is_asc=is_asc, ) )
["def","get_node_executions","(","store",":","mlmd.MetadataStore",",","*",",","pipeline_id",":","str",",","node_id",":","str",",","pipeline_run_id",":","Optional","[","str","]","=","None",",","order_by",":","mlmd.OrderByField","=","mlmd.OrderByField.ID",",","is_asc",":","bool","=","True",",","execution_states",":","Optional","[","Sequence","[","``","mlmd.proto.Execution.State","''","]","]","=","None",",","min_last_update_time_since_epoch",":","Optional","[","int","]","=","None",",",")","-",">","Sequence","[","mlmd.proto.Execution","]",":","``","''","''","Gets","all","node","executions",".","Args",":","store",":","A","MetadataStore","object",".","pipeline_id",":","The","pipeline","ID",".","node_id",":","The","node","ID",".","pipeline_run_id",":","The","pipeline","run","ID","that","the","node","belongs","to",".","Only","executions","from","the","specified","pipeline","run","are","returned","if","specified",".","order_by",":","The","field","of","execution","to","order","results","by",".","is_asc",":","If","True",",","the","results","will","be","returned","in","the","ascending","order",".","If","False",",","the","result","will","be","returned","in","the","descending","order",".","execution_states",":","The","MLMD","execution","state","(","s",")","to","pull","LIVE","artifacts","from",".","If","not","specified","or","is","empty",",","will","consider","all","MLMD","execution","states",".","min_last_update_time_since_epoch",":","The","minimum","update","time","of","MLMD","executions","in","the","format","of","milliseconds","since","the","unix","epoch",".","If","not","specified",",","will","consider","all","MLMD","executions",".","Returns",":","A","list","of","executions","of","the","given","pipeline","node.","``","''","''","node_context_name","=","compiler_utils.node_context_name","(","pipeline_id",",","node_id",")","node_executions_filter_queries","=","[","]","node_executions_filter_queries.append","(","q.And","(","[","f'contexts_0.type","=","``","{","constants.NODE_CONTEXT_TYPE_NAME","}","''","'",",","f'contexts_0.name","=","``","{","node_context_name","}","''","'",",","]",")",")","if","pipeline_run_id",":","node_executions_filter_queries.append","(","q.And","(","[","f'contexts_1.type","=","``","{","constants.PIPELINE_RUN_CONTEXT_TYPE_NAME","}","''","'",",","f'contexts_1.name","=","``","{","pipeline_run_id","}","''","'",",","]",")",")","if","execution_states",":","states_str","=","``",",","''",".join","(","[","mlmd.proto.Execution.State.Name","(","state",")","for","state","in","execution_states","]",")","states_filter_query","=","f","''","last_known_state","IN","(","{","states_str","}",")","''","node_executions_filter_queries.append","(","states_filter_query",")","if","min_last_update_time_since_epoch",":","node_executions_filter_queries.append","(","f","''","last_update_time_since_epoch",">","=","{","min_last_update_time_since_epoch","}","''",")","return","store.get_executions","(","list_options=mlmd.ListOptions","(","filter_query=str","(","q.And","(","node_executions_filter_queries",")",")",",","order_by=order_by",",","is_asc=is_asc",",",")",")"]
90
154
null
store_ext.py
tfx/tfx/orchestration/portable/mlmd/store_ext.py
import collections import itertools from typing import Callable, Mapping, Optional, Sequence, Union from tfx.dsl.compiler import compiler_utils from tfx.dsl.compiler import constants from tfx.orchestration.experimental.core import constants from tfx.orchestration.portable.mlmd import event_lib from tfx.orchestration.portable.mlmd import filter_query_builder import ml_metadata
15
null
9
6
null
null
null
Use image node_id 4 for calling a global function with example usage: get_node_executions(store) and returns: store
115
node_id 4
2,198,858
__init__
Distribution
object
true
self,generator
Sampling distribution for mystic optimizers
["Sampling","distribution","for","mystic","optimizers"]
generate a sampling distribution with interface dist(size=None) input:: - generator: a 'distribution' method from scipy.stats or numpy.random - rng: a mystic.random_state object [default: random_state('numpy.random')] - args: positional arguments for the distribtution object - kwds: keyword arguments for the distribution object note:: this method only accepts numpy.random methods with the keyword 'size', and only accepts random_state objects built with module='numpy.random' note:: generator may be a method object or a string of 'module.object'; similarly, rng may be a random_state object or a string of 'module' note:: Distributions d1,d2 may be combined by adding data (i.e. d1(n) + d2(n)), or by adding probabilitiies as Distribution(d1,d2); the former uses the addition operator and produces a new unnormalized Distribution, while the latter produces a new Distribution which randomly chooses from the Distributions provided note:: a normalization factor can be incorporated through the multiplication or division operator, and is stored in the Distribution as 'norm'
["generate","a","sampling","distribution","with","interface","dist","(","size=None",")","input",":",":","-","generator",":","a","'distribution","'","method","from","scipy.stats","or","numpy.random","-","rng",":","a","mystic.random_state","object","[","default",":","random_state","(","'numpy.random","'",")","]","-","args",":","positional","arguments","for","the","distribtution","object","-","kwds",":","keyword","arguments","for","the","distribution","object","note",":",":","this","method","only","accepts","numpy.random","methods","with","the","keyword","'size","'",",","and","only","accepts","random_state","objects","built","with","module='numpy.random'","note",":",":","generator","may","be","a","method","object","or","a","string","of","'module.object","'",";","similarly",",","rng","may","be","a","random_state","object","or","a","string","of","'module'","note",":",":","Distributions","d1",",","d2","may","be","combined","by","adding","data","(","i.e",".","d1","(","n",")","+","d2","(","n",")",")",",","or","by","adding","probabilitiies","as","Distribution","(","d1",",","d2",")",";","the","former","uses","the","addition","operator","and","produces","a","new","unnormalized","Distribution",",","while","the","latter","produces","a","new","Distribution","which","randomly","chooses","from","the","Distributions","provided","note",":",":","a","normalization","factor","can","be","incorporated","through","the","multiplication","or","division","operator",",","and","is","stored","in","the","Distribution","as","'norm","'"]
Distribution
def __init__(self, generator=None, *args, **kwds): """ generate a sampling distribution with interface dist(size=None) input:: - generator: a 'distribution' method from scipy.stats or numpy.random - rng: a mystic.random_state object [default: random_state('numpy.random')] - args: positional arguments for the distribtution object - kwds: keyword arguments for the distribution object note:: this method only accepts numpy.random methods with the keyword 'size', and only accepts random_state objects built with module='numpy.random' note:: generator may be a method object or a string of 'module.object'; similarly, rng may be a random_state object or a string of 'module' note:: Distributions d1,d2 may be combined by adding data (i.e. d1(n) + d2(n)), or by adding probabilitiies as Distribution(d1,d2); the former uses the addition operator and produces a new unnormalized Distribution, while the latter produces a new Distribution which randomly chooses from the Distributions provided note:: a normalization factor can be incorporated through the multiplication or division operator, and is stored in the Distribution as 'norm' """ # XXX: generate Distribution from list of Distributions? self.norm = kwds.pop("norm", 1) + 0 if isinstance(generator, Distribution): if kwds: msg = "keyword arguments are invalid with {0} instance".format( self.__class__.__name__ ) raise TypeError(msg) if not args: self._type = generator._type self.rvs = generator.rvs self.repr = generator.repr self.norm *= generator.norm return # args can only support additional distribution instances for arg in args: if not isinstance(arg, Distribution): # raise TypeError generator += arg # use choice from multiple distributions import numpy as np generator = (generator,) + args rep = ( lambda di: "{0}".format(di).split("(", 1)[-1][:-1] if di._type == "join" else "{0}".format(di) ) sig = ", ".join(rep(i) for i in generator) self.repr = lambda cls, fac: ( "{0}({1}".format(cls, sig) + (")" if fac == 1 else ", norm={0})".format(fac)) ) self.rvs = lambda size=None: np.choose( np.random.choice(range(len(generator)), size=size), tuple(d(size) for d in generator), ) self._type = "join" return from mystic.tools import random_state rng = kwds.pop("rng", random_state(module="numpy.random")) if isinstance(rng, str): rng = random_state(module=rng) mod = "numpy.random" if generator is None: generator = rng.random mod = rng.__name__ elif isinstance(generator, str): from importlib import import_module if "." in generator: mod, generator = generator.rsplit(".", 1) mod = import_module(mod) else: mod = rng generator = getattr(mod, generator) mod = mod.__name__ if getattr(generator, "rvs", False): d = generator(*args, **kwds) self.rvs = lambda size=None: d.rvs( size=size, random_state=rng ) name = getattr( generator, "name", None ) # XXX: also try __name__? mod = "scipy.stats" # XXX: assumed due to 'd.rvs' else: d = getattr(rng, generator.__name__) self.rvs = lambda size=None: d(size=size, *args, **kwds) name = generator.__name__ mod = getattr( rng, "__name__", "numpy.random" ) # XXX: bad default? name = "'{0}.{1}'".format(mod, name) if name else "" sig = ", ".join(str(i) for i in args) kwd = ", ".join("{0}={1}".format(i, j) for i, j in kwds.items()) # nrm = '' if self.norm == 1 else 'norm={0}'.format(self.norm) # kwd = '{0}, {1}'.format(kwd, nrm) if (kwd and nrm) else (kwd or nrm) sig = ( "{0}, {1}".format(sig, kwd) if (sig and kwd) else (sig or kwd) ) if name and sig: name += ", " # sig = ", rng='{0}')".format(rng.__name__) self.repr = lambda cls, fac: ( "{0}({1}".format(cls, name) + sig + ( "" if fac == 1 else ( (", " if (name or sig) else "") + "norm={0}".format(fac) ) ) + ")" ) self._type = "base" return
["def","__init__","(","self",",","generator=None",",","*","args",",","*","*","kwds",")",":","``","''","''","generate","a","sampling","distribution","with","interface","dist","(","size=None",")","input",":",":","-","generator",":","a","'distribution","'","method","from","scipy.stats","or","numpy.random","-","rng",":","a","mystic.random_state","object","[","default",":","random_state","(","'numpy.random","'",")","]","-","args",":","positional","arguments","for","the","distribtution","object","-","kwds",":","keyword","arguments","for","the","distribution","object","note",":",":","this","method","only","accepts","numpy.random","methods","with","the","keyword","'size","'",",","and","only","accepts","random_state","objects","built","with","module='numpy.random'","note",":",":","generator","may","be","a","method","object","or","a","string","of","'module.object","'",";","similarly",",","rng","may","be","a","random_state","object","or","a","string","of","'module'","note",":",":","Distributions","d1",",","d2","may","be","combined","by","adding","data","(","i.e",".","d1","(","n",")","+","d2","(","n",")",")",",","or","by","adding","probabilitiies","as","Distribution","(","d1",",","d2",")",";","the","former","uses","the","addition","operator","and","produces","a","new","unnormalized","Distribution",",","while","the","latter","produces","a","new","Distribution","which","randomly","chooses","from","the","Distributions","provided","note",":",":","a","normalization","factor","can","be","incorporated","through","the","multiplication","or","division","operator",",","and","is","stored","in","the","Distribution","as","'norm'","``","''","''","#","XXX",":","generate","Distribution","from","list","of","Distributions","?","self.norm","=","kwds.pop","(","``","norm","''",",","1",")","+","0","if","isinstance","(","generator",",","Distribution",")",":","if","kwds",":","msg","=","``","keyword","arguments","are","invalid","with","{","0","}","instance","''",".format","(","self.__class__.__name__",")","raise","TypeError","(","msg",")","if","not","args",":","self._type","=","generator._type","self.rvs","=","generator.rvs","self.repr","=","generator.repr","self.norm","*","=","generator.norm","return","#","args","can","only","support","additional","distribution","instances","for","arg","in","args",":","if","not","isinstance","(","arg",",","Distribution",")",":","#","raise","TypeError","generator","+=","arg","#","use","choice","from","multiple","distributions","import","numpy","as","np","generator","=","(","generator",",",")","+","args","rep","=","(","lambda","di",":","``","{","0","}","''",".format","(","di",")",".split","(","``","(","``",",","1",")","[","-1","]","[",":","-1","]","if","di._type","==","``","join","''","else","``","{","0","}","''",".format","(","di",")",")","sig","=","``",",","``",".join","(","rep","(","i",")","for","i","in","generator",")","self.repr","=","lambda","cls",",","fac",":","(","``","{","0","}","(","{","1","}","''",".format","(","cls",",","sig",")","+","(","``",")","''","if","fac","==","1","else","``",",","norm=","{","0","}",")","''",".format","(","fac",")",")",")","self.rvs","=","lambda","size=None",":","np.choose","(","np.random.choice","(","range","(","len","(","generator",")",")",",","size=size",")",",","tuple","(","d","(","size",")","for","d","in","generator",")",",",")","self._type","=","``","join","''","return","from","mystic.tools","import","random_state","rng","=","kwds.pop","(","``","rng","''",",","random_state","(","module=","''","numpy.random","''",")",")","if","isinstance","(","rng",",","str",")",":","rng","=","random_state","(","module=rng",")","mod","=","``","numpy.random","''","if","generator","is","None",":","generator","=","rng.random","mod","=","rng.__name__","elif","isinstance","(","generator",",","str",")",":","from","importlib","import","import_module","if","``",".","''","in","generator",":","mod",",","generator","=","generator.rsplit","(","``",".","``",",","1",")","mod","=","import_module","(","mod",")","else",":","mod","=","rng","generator","=","getattr","(","mod",",","generator",")","mod","=","mod.__name__","if","getattr","(","generator",",","``","rvs","''",",","False",")",":","d","=","generator","(","*","args",",","*","*","kwds",")","self.rvs","=","lambda","size=None",":","d.rvs","(","size=size",",","random_state=rng",")","name","=","getattr","(","generator",",","``","name","''",",","None",")","#","XXX",":","also","try","__name__","?","mod","=","``","scipy.stats","''","#","XXX",":","assumed","due","to","'d.rvs'","else",":","d","=","getattr","(","rng",",","generator.__name__",")","self.rvs","=","lambda","size=None",":","d","(","size=size",",","*","args",",","*","*","kwds",")","name","=","generator.__name__","mod","=","getattr","(","rng",",","``","__name__","''",",","``","numpy.random","''",")","#","XXX",":","bad","default","?","name","=","``","'","{","0","}",".","{","1","}","'","''",".format","(","mod",",","name",")","if","name","else","``","''","sig","=","``",",","``",".join","(","str","(","i",")","for","i","in","args",")","kwd","=","``",",","``",".join","(","``","{","0","}","=","{","1","}","''",".format","(","i",",","j",")","for","i",",","j","in","kwds.items","(",")",")","#","nrm","=","``","if","self.norm","==","1","else","'norm=","{","0","}","'.format","(","self.norm",")","#","kwd","=","'","{","0","}",",","{","1","}","'.format","(","kwd",",","nrm",")","if","(","kwd","and","nrm",")","else","(","kwd","or","nrm",")","sig","=","(","``","{","0","}",",","{","1","}","''",".format","(","sig",",","kwd",")","if","(","sig","and","kwd",")","else","(","sig","or","kwd",")",")","if","name","and","sig",":","name","+=","``",",","``","#","sig","=","``",",","rng=","'","{","0","}","'",")","''",".format","(","rng.__name__",")","self.repr","=","lambda","cls",",","fac",":","(","``","{","0","}","(","{","1","}","''",".format","(","cls",",","name",")","+","sig","+","(","``","''","if","fac","==","1","else","(","(","``",",","``","if","(","name","or","sig",")","else","``","''",")","+","``","norm=","{","0","}","''",".format","(","fac",")",")",")","+","``",")","''",")","self._type","=","``","base","''","return"]
55
144
null
__init__.py
mystic/mystic/math/__init__.py
from .poly import polyeval, poly1d from .grid import gridpts, samplepts, fillpts from .approx import almostEqual, tolerance from .approx import approx_equal from .None import discrete from .None import distance
15
1
6
0
1
7
1
Use image node_id 1 to create a new Distribution object from inherited base classes: object with example: obj = Distribution(generator)
135
node_id 1
1,406,721
__call__
Distribution
object
true
self,size
Sampling distribution for mystic optimizers
["Sampling","distribution","for","mystic","optimizers"]
generate a sample of given size (tuple) from the distribution
["generate","a","sample","of","given","size","(","tuple",")","from","the","distribution"]
unknown
def __call__(self, size=None): """generate a sample of given size (tuple) from the distribution""" return self.norm * self.rvs(size)
["def","__call__","(","self",",","size=None",")",":","``","''","''","generate","a","sample","of","given","size","(","tuple",")","from","the","distribution","''","''","''","return","self.norm","*","self.rvs","(","size",")"]
145
147
null
__init__.py
mystic/mystic/math/__init__.py
from .poly import polyeval, poly1d from .grid import gridpts, samplepts, fillpts from .approx import almostEqual, tolerance from .approx import approx_equal from .None import discrete from .None import distance
15
1
6
0
1
7
1
Use image node_id 2 for calling the Distribution obj's underlying member method code with example usage: obj.__call__(size) and returns: unknown
144
node_id 2
1,406,722
__repr__
Distribution
object
true
self
Sampling distribution for mystic optimizers
["Sampling","distribution","for","mystic","optimizers"]
null
null
self
def __repr__(self): return self.repr(self.__class__.__name__, self.norm)
["def","__repr__","(","self",")",":","return","self.repr","(","self.__class__.__name__",",","self.norm",")"]
148
149
null
__init__.py
mystic/mystic/math/__init__.py
from .poly import polyeval, poly1d from .grid import gridpts, samplepts, fillpts from .approx import almostEqual, tolerance from .approx import approx_equal from .None import discrete from .None import distance
15
1
6
0
1
7
1
Use image node_id 3 for calling the Distribution obj's underlying member method code with example usage: obj.__repr__() and returns: self
137
node_id 3
1,406,723
__add__
Distribution
object
true
self,dist
Sampling distribution for mystic optimizers
["Sampling","distribution","for","mystic","optimizers"]
null
null
new
def __add__(self, dist): if not isinstance(dist, Distribution): msg = "unsupported operand type(s) for +: '{0}' and '{1}'".format( self.__class__.__name__, type(dist) ) raise TypeError(msg) # add data from multiple distributions new = Distribution() first = "{0}".format(self) second = "{0}".format(dist) if self._type == "add": first = first.split("(", 1)[-1][:-1] if dist._type == "add": second = second.split("(", 1)[-1][:-1] new.repr = lambda cls, fac: ( "{0}({1} + {2}".format(cls, first, second) + (")" if fac == 1 else ", norm={0})".format(fac)) ) new.rvs = lambda size=None: (self(size) + dist(size)) new._type = "add" new.norm = 1 return new
["def","__add__","(","self",",","dist",")",":","if","not","isinstance","(","dist",",","Distribution",")",":","msg","=","``","unsupported","operand","type","(","s",")","for","+",":","'","{","0","}","'","and","'","{","1","}","'","''",".format","(","self.__class__.__name__",",","type","(","dist",")",")","raise","TypeError","(","msg",")","#","add","data","from","multiple","distributions","new","=","Distribution","(",")","first","=","``","{","0","}","''",".format","(","self",")","second","=","``","{","0","}","''",".format","(","dist",")","if","self._type","==","``","add","''",":","first","=","first.split","(","``","(","``",",","1",")","[","-1","]","[",":","-1","]","if","dist._type","==","``","add","''",":","second","=","second.split","(","``","(","``",",","1",")","[","-1","]","[",":","-1","]","new.repr","=","lambda","cls",",","fac",":","(","``","{","0","}","(","{","1","}","+","{","2","}","''",".format","(","cls",",","first",",","second",")","+","(","``",")","''","if","fac","==","1","else","``",",","norm=","{","0","}",")","''",".format","(","fac",")",")",")","new.rvs","=","lambda","size=None",":","(","self","(","size",")","+","dist","(","size",")",")","new._type","=","``","add","''","new.norm","=","1","return","new"]
150
164
null
__init__.py
mystic/mystic/math/__init__.py
from .poly import polyeval, poly1d from .grid import gridpts, samplepts, fillpts from .approx import almostEqual, tolerance from .approx import approx_equal from .None import discrete from .None import distance
15
1
6
0
1
7
1
Use image node_id 4 for calling the Distribution obj's underlying member method code with example usage: obj.__add__(dist) and returns: new
139
node_id 4
1,406,724
convert_cfg_to_dict
global
null
false
cfg_node,key_list
null
null
null
null
cfg_node,cfg_dict
def convert_cfg_to_dict(cfg_node, key_list=[]): """Convert a config node to dictionary""" if not isinstance(cfg_node, CfgNode): if type(cfg_node) not in _VALID_TYPES: print( "Key {} with value {} is not a valid type; valid types: {}".format( ".".join(key_list), type(cfg_node), _VALID_TYPES ), ) return cfg_node else: cfg_dict = dict(cfg_node) for k, v in cfg_dict.items(): cfg_dict[k] = convert_cfg_to_dict(v, key_list + [k]) return cfg_dict
["def","convert_cfg_to_dict","(","cfg_node",",","key_list=","[","]",")",":","``","''","''","Convert","a","config","node","to","dictionary","''","''","''","if","not","isinstance","(","cfg_node",",","CfgNode",")",":","if","type","(","cfg_node",")","not","in","_VALID_TYPES",":","print","(","``","Key","{","}","with","value","{","}","is","not","a","valid","type",";","valid","types",":","{","}","''",".format","(","``",".","``",".join","(","key_list",")",",","type","(","cfg_node",")",",","_VALID_TYPES",")",",",")","return","cfg_node","else",":","cfg_dict","=","dict","(","cfg_node",")","for","k",",","v","in","cfg_dict.items","(",")",":","cfg_dict","[","k","]","=","convert_cfg_to_dict","(","v",",","key_list","+","[","k","]",")","return","cfg_dict"]
65
76
null
config.py
OpenPrompt/openprompt/config.py
import argparse from yacs.config import CfgNode import sys from openprompt.utils.utils import check_config_conflicts from .default_config import get_default_config from openprompt.utils.logging import logger import os
15
null
7
8
null
null
null
Use image node_id 4 for calling a global function with example usage: convert_cfg_to_dict(cfg_node, key_list) and returns: cfg_node, cfg_dict
141
node_id 4
152,520
get_live_output_artifacts_of_node_by_output_key
global
null
false
store
null
null
null
null
output_artifacts_by_output_key,dict,dict
def get_live_output_artifacts_of_node_by_output_key( store: mlmd.MetadataStore, *, pipeline_id: str, node_id: str, pipeline_run_id: Optional[str] = None, execution_states: Optional[ Sequence["mlmd.proto.Execution.State"] ] = None, ) -> Mapping[str, Sequence[Sequence[mlmd.proto.Artifact]]]: """Get LIVE output artifacts of the given node grouped by output key. The LIVE output artifacts associated with an output key are represented as a list of a list of artifacts. 1. The outer list represents artifacts generated across all executions. 2. The inner list represents artifacts generated by one execution. 3. Elements in the outer list are returned in descending order of the creation time of the execution associated with them. 4. Elements in the inner list have no order guarantee. 5. If no LIVE output artifacts found for one execution, an empty list will be returned. Args: store: A MetadataStore object. pipeline_id: A pipeline ID. node_id: A node ID. pipeline_run_id: The pipeline run ID that the node belongs to. Only artifacts from the specified pipeline run are returned if specified. execution_states: The MLMD execution state(s) to pull LIVE artifacts from. If not specified or is empty, will consider MLMD execution states in [COMPLETE, CACHED]. Returns: A mapping from output key to all output artifacts from the given node. """ # Step 1: Get LIVE artifacts attributed to node with `node_id`. live_artifacts = _get_node_live_artifacts( store, pipeline_id=pipeline_id, node_id=node_id, pipeline_run_id=pipeline_run_id, ) if not live_artifacts: return {} # Step 2: Get executions associated with node that created `live_artifacts` # ordered by execution creation time in descending order. # These executions should satisfy the constraint: # min (execution update time) >= min (artifact create time) min_live_artifact_create_time = min( [a.create_time_since_epoch for a in live_artifacts], default=0 ) # Within one transaction that updates both artifacts and execution, the # timestamp of execution is larger or equal than that of the artifacts. # Apply time skew for the artifacts created before cl/574333630 is rolled out. # TODO(b/275231956): Remove the following 2 lines if we are sure that there # are no more artifacts older than the timestamp. if ( min_live_artifact_create_time < orchestration_constants.TIME_SKEW_DATE ): min_live_artifact_create_time -= 24 * 3600 * 1000 executions_ordered_by_desc_creation_time = get_node_executions( store, pipeline_id=pipeline_id, node_id=node_id, pipeline_run_id=pipeline_run_id, order_by=mlmd.OrderByField.CREATE_TIME, is_asc=False, execution_states=execution_states, min_last_update_time_since_epoch=min_live_artifact_create_time, ) if not executions_ordered_by_desc_creation_time: return {} # Step 3: Get output events by executions obtained in step 2. events_by_executions = store.get_events_by_execution_ids( _ids(executions_ordered_by_desc_creation_time) ) output_events = [ e for e in events_by_executions if event_lib.is_valid_output_event(e) ] # Step 4: Construct and return `output_artifacts_by_output_key` from events. # # Create a mapping from execution_id to an empty list first to make sure # iteration orders of output_events_by_execution_id and # output_artifacts_map_by_execution_id are both in desc order of execution's # creation time. # # The desc order is guaranteed by execution_ids and dict is guaranteed to be # iterated in the insertion order of keys. output_events_by_execution_id = { execution.id: [] for execution in executions_ordered_by_desc_creation_time } for event in output_events: output_events_by_execution_id[event.execution_id].append( event ) artifact_ids_by_output_key_map_by_execution_id = {} for exec_id, events in output_events_by_execution_id.items(): output_artifacts_map = ( event_lib.reconstruct_artifact_id_multimap(events) ) artifact_ids_by_output_key_map_by_execution_id[ exec_id ] = output_artifacts_map output_artifacts_by_output_key = collections.defaultdict(list) # Keep only LIVE output artifacts when constructing the result. live_artifacts_by_id = {a.id: a for a in live_artifacts} for ( artifact_ids_by_output_key ) in artifact_ids_by_output_key_map_by_execution_id.values(): for ( output_key, artifact_ids, ) in artifact_ids_by_output_key.items(): live_output_artifacts = [ live_artifacts_by_id[artifact_id] for artifact_id in artifact_ids if artifact_id in live_artifacts_by_id ] output_artifacts_by_output_key[output_key].append( live_output_artifacts ) return output_artifacts_by_output_key
["def","get_live_output_artifacts_of_node_by_output_key","(","store",":","mlmd.MetadataStore",",","*",",","pipeline_id",":","str",",","node_id",":","str",",","pipeline_run_id",":","Optional","[","str","]","=","None",",","execution_states",":","Optional","[","Sequence","[","``","mlmd.proto.Execution.State","''","]","]","=","None",",",")","-",">","Mapping","[","str",",","Sequence","[","Sequence","[","mlmd.proto.Artifact","]","]","]",":","``","''","''","Get","LIVE","output","artifacts","of","the","given","node","grouped","by","output","key",".","The","LIVE","output","artifacts","associated","with","an","output","key","are","represented","as","a","list","of","a","list","of","artifacts",".","1",".","The","outer","list","represents","artifacts","generated","across","all","executions",".","2",".","The","inner","list","represents","artifacts","generated","by","one","execution",".","3",".","Elements","in","the","outer","list","are","returned","in","descending","order","of","the","creation","time","of","the","execution","associated","with","them",".","4",".","Elements","in","the","inner","list","have","no","order","guarantee",".","5",".","If","no","LIVE","output","artifacts","found","for","one","execution",",","an","empty","list","will","be","returned",".","Args",":","store",":","A","MetadataStore","object",".","pipeline_id",":","A","pipeline","ID",".","node_id",":","A","node","ID",".","pipeline_run_id",":","The","pipeline","run","ID","that","the","node","belongs","to",".","Only","artifacts","from","the","specified","pipeline","run","are","returned","if","specified",".","execution_states",":","The","MLMD","execution","state","(","s",")","to","pull","LIVE","artifacts","from",".","If","not","specified","or","is","empty",",","will","consider","MLMD","execution","states","in","[","COMPLETE",",","CACHED","]",".","Returns",":","A","mapping","from","output","key","to","all","output","artifacts","from","the","given","node.","``","''","''","#","Step","1",":","Get","LIVE","artifacts","attributed","to","node","with","`","node_id","`",".","live_artifacts","=","_get_node_live_artifacts","(","store",",","pipeline_id=pipeline_id",",","node_id=node_id",",","pipeline_run_id=pipeline_run_id",",",")","if","not","live_artifacts",":","return","{","}","#","Step","2",":","Get","executions","associated","with","node","that","created","`","live_artifacts","`","#","ordered","by","execution","creation","time","in","descending","order",".","#","These","executions","should","satisfy","the","constraint",":","#","min","(","execution","update","time",")",">","=","min","(","artifact","create","time",")","min_live_artifact_create_time","=","min","(","[","a.create_time_since_epoch","for","a","in","live_artifacts","]",",","default=0",")","#","Within","one","transaction","that","updates","both","artifacts","and","execution",",","the","#","timestamp","of","execution","is","larger","or","equal","than","that","of","the","artifacts",".","#","Apply","time","skew","for","the","artifacts","created","before","cl\/574333630","is","rolled","out",".","#","TODO","(","b\/275231956",")",":","Remove","the","following","2","lines","if","we","are","sure","that","there","#","are","no","more","artifacts","older","than","the","timestamp",".","if","(","min_live_artifact_create_time","<","orchestration_constants.TIME_SKEW_DATE",")",":","min_live_artifact_create_time","-=","24","*","3600","*","1000","executions_ordered_by_desc_creation_time","=","get_node_executions","(","store",",","pipeline_id=pipeline_id",",","node_id=node_id",",","pipeline_run_id=pipeline_run_id",",","order_by=mlmd.OrderByField.CREATE_TIME",",","is_asc=False",",","execution_states=execution_states",",","min_last_update_time_since_epoch=min_live_artifact_create_time",",",")","if","not","executions_ordered_by_desc_creation_time",":","return","{","}","#","Step","3",":","Get","output","events","by","executions","obtained","in","step","2.","events_by_executions","=","store.get_events_by_execution_ids","(","_ids","(","executions_ordered_by_desc_creation_time",")",")","output_events","=","[","e","for","e","in","events_by_executions","if","event_lib.is_valid_output_event","(","e",")","]","#","Step","4",":","Construct","and","return","`","output_artifacts_by_output_key","`","from","events",".","#","#","Create","a","mapping","from","execution_id","to","an","empty","list","first","to","make","sure","#","iteration","orders","of","output_events_by_execution_id","and","#","output_artifacts_map_by_execution_id","are","both","in","desc","order","of","execution's","#","creation","time",".","#","#","The","desc","order","is","guaranteed","by","execution_ids","and","dict","is","guaranteed","to","be","#","iterated","in","the","insertion","order","of","keys",".","output_events_by_execution_id","=","{","execution.id",":","[","]","for","execution","in","executions_ordered_by_desc_creation_time","}","for","event","in","output_events",":","output_events_by_execution_id","[","event.execution_id","]",".append","(","event",")","artifact_ids_by_output_key_map_by_execution_id","=","{","}","for","exec_id",",","events","in","output_events_by_execution_id.items","(",")",":","output_artifacts_map","=","(","event_lib.reconstruct_artifact_id_multimap","(","events",")",")","artifact_ids_by_output_key_map_by_execution_id","[","exec_id","]","=","output_artifacts_map","output_artifacts_by_output_key","=","collections.defaultdict","(","list",")","#","Keep","only","LIVE","output","artifacts","when","constructing","the","result",".","live_artifacts_by_id","=","{","a.id",":","a","for","a","in","live_artifacts","}","for","(","artifact_ids_by_output_key",")","in","artifact_ids_by_output_key_map_by_execution_id.values","(",")",":","for","(","output_key",",","artifact_ids",",",")","in","artifact_ids_by_output_key.items","(",")",":","live_output_artifacts","=","[","live_artifacts_by_id","[","artifact_id","]","for","artifact_id","in","artifact_ids","if","artifact_id","in","live_artifacts_by_id","]","output_artifacts_by_output_key","[","output_key","]",".append","(","live_output_artifacts",")","return","output_artifacts_by_output_key"]
157
273
null
store_ext.py
tfx/tfx/orchestration/portable/mlmd/store_ext.py
import collections import itertools from typing import Callable, Mapping, Optional, Sequence, Union from tfx.dsl.compiler import compiler_utils from tfx.dsl.compiler import constants from tfx.orchestration.experimental.core import constants from tfx.orchestration.portable.mlmd import event_lib from tfx.orchestration.portable.mlmd import filter_query_builder import ml_metadata
15
null
9
6
null
null
null
Use image node_id 5 for calling a global function with example usage: get_live_output_artifacts_of_node_by_output_key(store) and returns: output_artifacts_by_output_key, dict, dict
180
node_id 5
2,198,859
test_zero_fwd
global
null
false
num_expert,batch_size,d_hidden,world_size
null
null
null
null
null
def test_zero_fwd( num_expert=2, batch_size=4, d_hidden=8, world_size=1 ): _run_distributed( "_test_zero_fwd", 1, { "num_expert": num_expert, "batch_size": batch_size, "d_hidden": d_hidden, }, script=__file__, )
["def","test_zero_fwd","(","num_expert=2",",","batch_size=4",",","d_hidden=8",",","world_size=1",")",":","_run_distributed","(","``","_test_zero_fwd","''",",","1",",","{","``","num_expert","''",":","num_expert",",","``","batch_size","''",":","batch_size",",","``","d_hidden","''",":","d_hidden",",","}",",","script=__file__",",",")"]
23
32
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
null
7
4
null
null
null
Use image node_id 1 for calling a global function with example usage: test_zero_fwd(num_expert, batch_size, d_hidden, world_size) without return types
150
node_id 1
2,201,995
_test_zero_fwd
global
null
false
num_expert,batch_size,d_hidden,world_size
null
null
null
null
null
def _test_zero_fwd( num_expert=2, batch_size=4, d_hidden=8, world_size=1 ): inp = torch.rand(batch_size, d_hidden).cuda() gate = torch.zeros(batch_size, dtype=torch.int64).cuda() x = _fmoe_general_global_forward( inp, gate, lambda x, y: x, num_expert, world_size )
["def","_test_zero_fwd","(","num_expert=2",",","batch_size=4",",","d_hidden=8",",","world_size=1",")",":","inp","=","torch.rand","(","batch_size",",","d_hidden",")",".cuda","(",")","gate","=","torch.zeros","(","batch_size",",","dtype=torch.int64",")",".cuda","(",")","x","=","_fmoe_general_global_forward","(","inp",",","gate",",","lambda","x",",","y",":","x",",","num_expert",",","world_size",")"]
34
38
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
null
7
4
null
null
null
Use image node_id 2 for calling a global function with example usage: _test_zero_fwd(num_expert, batch_size, d_hidden, world_size) without return types
151
node_id 2
2,201,996
test_zero_transformer
global
null
false
num_expert,batch_size,d_hidden,world_size
null
null
null
null
null
def test_zero_transformer( num_expert=2, batch_size=4, d_hidden=8, world_size=1 ): _run_distributed( "_test_zero_transformer", 1, { "num_expert": num_expert, "batch_size": batch_size, "d_hidden": d_hidden, }, script=__file__, )
["def","test_zero_transformer","(","num_expert=2",",","batch_size=4",",","d_hidden=8",",","world_size=1",")",":","_run_distributed","(","``","_test_zero_transformer","''",",","1",",","{","``","num_expert","''",":","num_expert",",","``","batch_size","''",":","batch_size",",","``","d_hidden","''",":","d_hidden",",","}",",","script=__file__",",",")"]
41
50
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
null
7
4
null
null
null
Use image node_id 3 for calling a global function with example usage: test_zero_transformer(num_expert, batch_size, d_hidden, world_size) without return types
158
node_id 3
2,201,997
_test_zero_transformer
global
null
false
num_expert,batch_size,d_hidden,world_size
null
null
null
null
null
def _test_zero_transformer( num_expert=2, batch_size=4, d_hidden=8, world_size=1 ): inp = torch.rand(batch_size, d_hidden).cuda() mask = torch.zeros(inp.shape[0], dtype=torch.long) mask[1] = 1 mask_dict = {1: torch.zeros(d_hidden).cuda()} model = FMoETransformerMLP( num_expert, d_hidden, d_hidden * 4, world_size, gate=ConstantGate, mask=mask, mask_dict=mask_dict, ).cuda() oup = model(inp)
["def","_test_zero_transformer","(","num_expert=2",",","batch_size=4",",","d_hidden=8",",","world_size=1",")",":","inp","=","torch.rand","(","batch_size",",","d_hidden",")",".cuda","(",")","mask","=","torch.zeros","(","inp.shape","[","0","]",",","dtype=torch.long",")","mask","[","1","]","=","1","mask_dict","=","{","1",":","torch.zeros","(","d_hidden",")",".cuda","(",")","}","model","=","FMoETransformerMLP","(","num_expert",",","d_hidden",",","d_hidden","*","4",",","world_size",",","gate=ConstantGate",",","mask=mask",",","mask_dict=mask_dict",",",")",".cuda","(",")","oup","=","model","(","inp",")"]
52
61
null
test_zero.py
thu-pacman-faster-moe/tests/test_zero.py
import os import sys import json import torch from fmoe.layers import _fmoe_general_global_forward from fmoe import FMoETransformerMLP from test_ddp import _run_distributed
15
null
7
4
null
null
null
Use image node_id 4 for calling a global function with example usage: _test_zero_transformer(num_expert, batch_size, d_hidden, world_size) without return types
159
node_id 4
2,201,998
setUp
TestHighConfidence
unittest
true
self
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
null
null
null
def setUp(self): master_seed(seed=1234)
["def","setUp","(","self",")",":","master_seed","(","seed=1234",")"]
41
42
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 2 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.setUp() without return types
143
node_id 2
235,297
test_difference
TestIntervalIndex
null
true
self,closed,sort
null
null
null
null
null
def test_difference(self, closed, sort): index = IntervalIndex.from_arrays( [1, 0, 3, 2], [1, 2, 3, 4], closed=closed ) result = index.difference(index[:1], sort=sort) expected = index[1:] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # GH 19101: empty result, same dtype result = index.difference(index, sort=sort) expected = empty_index(dtype="int64", closed=closed) tm.assert_index_equal(result, expected) # GH 19101: empty result, different dtypes other = IntervalIndex.from_arrays( index.left.astype("float64"), index.right, closed=closed ) result = index.difference(other, sort=sort) tm.assert_index_equal(result, expected)
["def","test_difference","(","self",",","closed",",","sort",")",":","index","=","IntervalIndex.from_arrays","(","[","1",",","0",",","3",",","2","]",",","[","1",",","2",",","3",",","4","]",",","closed=closed",")","result","=","index.difference","(","index","[",":1","]",",","sort=sort",")","expected","=","index","[","1",":","]","if","sort","is","None",":","expected","=","expected.sort_values","(",")","tm.assert_index_equal","(","result",",","expected",")","#","GH","19101",":","empty","result",",","same","dtype","result","=","index.difference","(","index",",","sort=sort",")","expected","=","empty_index","(","dtype=","''","int64","''",",","closed=closed",")","tm.assert_index_equal","(","result",",","expected",")","#","GH","19101",":","empty","result",",","different","dtypes","other","=","IntervalIndex.from_arrays","(","index.left.astype","(","``","float64","''",")",",","index.right",",","closed=closed",")","result","=","index.difference","(","other",",","sort=sort",")","tm.assert_index_equal","(","result",",","expected",")"]
131
149
null
test_setops.py
pandas/pandas/tests/indexes/interval/test_setops.py
import numpy import pytest from pandas import Index, IntervalIndex, Timestamp, interval_range import pandas._testing
15
1
4
2
0
8
null
Use image node_id 6 for calling the TestIntervalIndex obj's underlying member method code with example usage: obj.test_difference(closed, sort) without return types
164
node_id 6
1,514,638
test_ThompsonSamplerUniformWeights
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def test_ThompsonSamplerUniformWeights(self) -> None: generator = ThompsonSampler(min_weight=0.0, uniform_weights=True) generator.fit( # pyre-fixme[6]: For 1st param expected `List[List[List[Union[None, # bool, float, int, str]]]]` but got `List[List[List[int]]]`. Xs=self.Xs, # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, _ = generator.gen( n=3, # pyre-fixme[6]: For 2nd param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, objective_weights=np.ones(1), ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip(weights, [1.0, 1.0, 1.0]): self.assertAlmostEqual(weight, expected_weight, 1)
["def","test_ThompsonSamplerUniformWeights","(","self",")","-",">","None",":","generator","=","ThompsonSampler","(","min_weight=0.0",",","uniform_weights=True",")","generator.fit","(","#","pyre-fixme","[","6","]",":","For","1st","param","expected","`","List","[","List","[","List","[","Union","[","None",",","#","bool",",","float",",","int",",","str","]","]","]","]","`","but","got","`","List","[","List","[","List","[","int","]","]","]","`",".","Xs=self.Xs",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","arms",",","weights",",","_","=","generator.gen","(","n=3",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","objective_weights=np.ones","(","1",")",",",")","self.assertEqual","(","arms",",","[","[","4",",","4","]",",","[","3",",","3","]",",","[","2",",","2","]","]",")","for","weight",",","expected_weight","in","zip","(","weights",",","[","1.0",",","1.0",",","1.0","]",")",":","self.assertAlmostEqual","(","weight",",","expected_weight",",","1",")"]
146
172
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 5 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.test_ThompsonSamplerUniformWeights() without return types
173
node_id 5
9,539
test_ThompsonSamplerMinWeight
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def test_ThompsonSamplerMinWeight(self) -> None: generator = ThompsonSampler(min_weight=0.01) generator.fit( # pyre-fixme[6]: For 1st param expected `List[List[List[Union[None, # bool, float, int, str]]]]` but got `List[List[List[int]]]`. Xs=self.Xs, # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, _ = generator.gen( n=5, # pyre-fixme[6]: For 2nd param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, objective_weights=np.ones(1), ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip( weights, [3 * i for i in [0.725, 0.225, 0.05]] ): self.assertAlmostEqual(weight, expected_weight, 1)
["def","test_ThompsonSamplerMinWeight","(","self",")","-",">","None",":","generator","=","ThompsonSampler","(","min_weight=0.01",")","generator.fit","(","#","pyre-fixme","[","6","]",":","For","1st","param","expected","`","List","[","List","[","List","[","Union","[","None",",","#","bool",",","float",",","int",",","str","]","]","]","]","`","but","got","`","List","[","List","[","List","[","int","]","]","]","`",".","Xs=self.Xs",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","arms",",","weights",",","_","=","generator.gen","(","n=5",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","objective_weights=np.ones","(","1",")",",",")","self.assertEqual","(","arms",",","[","[","4",",","4","]",",","[","3",",","3","]",",","[","2",",","2","]","]",")","for","weight",",","expected_weight","in","zip","(","weights",",","[","3","*","i","for","i","in","[","0.725",",","0.225",",","0.05","]","]",")",":","self.assertAlmostEqual","(","weight",",","expected_weight",",","1",")"]
116
144
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 4 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.test_ThompsonSamplerMinWeight() without return types
168
node_id 4
9,538
test_ThompsonSamplerValidation
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def test_ThompsonSamplerValidation(self) -> None: generator = ThompsonSampler(min_weight=0.01) # all Xs are not the same with self.assertRaises(ValueError): generator.fit( Xs=[ [[1, 1], [2, 2], [3, 3], [4, 4]], [[1, 1], [2, 2], [4, 4]], ], # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # multiple observations per parameterization with self.assertRaises(ValueError): generator.fit( Xs=[[[1, 1], [2, 2], [2, 2]]], # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # these are not the same observations, so should not error generator.fit( Xs=[[[1, 1], [2.0, 2], [2, 2]]], # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # requires objective weights with self.assertRaises(ValueError): # pyre-fixme[6]: For 2nd param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. generator.gen( 5, self.parameter_values, objective_weights=None )
["def","test_ThompsonSamplerValidation","(","self",")","-",">","None",":","generator","=","ThompsonSampler","(","min_weight=0.01",")","#","all","Xs","are","not","the","same","with","self.assertRaises","(","ValueError",")",":","generator.fit","(","Xs=","[","[","[","1",",","1","]",",","[","2",",","2","]",",","[","3",",","3","]",",","[","4",",","4","]","]",",","[","[","1",",","1","]",",","[","2",",","2","]",",","[","4",",","4","]","]",",","]",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","#","multiple","observations","per","parameterization","with","self.assertRaises","(","ValueError",")",":","generator.fit","(","Xs=","[","[","[","1",",","1","]",",","[","2",",","2","]",",","[","2",",","2","]","]","]",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","#","these","are","not","the","same","observations",",","so","should","not","error","generator.fit","(","Xs=","[","[","[","1",",","1","]",",","[","2.0",",","2","]",",","[","2",",","2","]","]","]",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","#","requires","objective","weights","with","self.assertRaises","(","ValueError",")",":","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","generator.gen","(","5",",","self.parameter_values",",","objective_weights=None",")"]
60
114
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 3 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.test_ThompsonSamplerValidation() without return types
169
node_id 3
9,537
test_ThompsonSampler
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def test_ThompsonSampler(self) -> None: generator = ThompsonSampler(min_weight=0.0) generator.fit( # pyre-fixme[6]: For 1st param expected `List[List[List[Union[None, # bool, float, int, str]]]]` but got `List[List[List[int]]]`. Xs=self.Xs, # pyre-fixme[6]: For 2nd param expected `List[List[float]]` but got # `List[List[int]]`. Ys=self.Ys, # pyre-fixme[6]: For 3rd param expected `List[List[float]]` but got # `List[List[int]]`. Yvars=self.Yvars, # pyre-fixme[6]: For 4th param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, gen_metadata = generator.gen( n=3, # pyre-fixme[6]: For 2nd param expected `List[List[Union[None, bool, # float, int, str]]]` but got `List[List[int]]`. parameter_values=self.parameter_values, objective_weights=np.ones(1), ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip( weights, [3 * i for i in [0.725, 0.225, 0.05]] ): self.assertAlmostEqual(weight, expected_weight, 1) self.assertEqual(len(gen_metadata["arms_to_weights"]), 4)
["def","test_ThompsonSampler","(","self",")","-",">","None",":","generator","=","ThompsonSampler","(","min_weight=0.0",")","generator.fit","(","#","pyre-fixme","[","6","]",":","For","1st","param","expected","`","List","[","List","[","List","[","Union","[","None",",","#","bool",",","float",",","int",",","str","]","]","]","]","`","but","got","`","List","[","List","[","List","[","int","]","]","]","`",".","Xs=self.Xs",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Ys=self.Ys",",","#","pyre-fixme","[","6","]",":","For","3rd","param","expected","`","List","[","List","[","float","]","]","`","but","got","#","`","List","[","List","[","int","]","]","`",".","Yvars=self.Yvars",",","#","pyre-fixme","[","6","]",":","For","4th","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","outcome_names=self.outcome_names",",",")","arms",",","weights",",","gen_metadata","=","generator.gen","(","n=3",",","#","pyre-fixme","[","6","]",":","For","2nd","param","expected","`","List","[","List","[","Union","[","None",",","bool",",","#","float",",","int",",","str","]","]","]","`","but","got","`","List","[","List","[","int","]","]","`",".","parameter_values=self.parameter_values",",","objective_weights=np.ones","(","1",")",",",")","self.assertEqual","(","arms",",","[","[","4",",","4","]",",","[","3",",","3","]",",","[","2",",","2","]","]",")","for","weight",",","expected_weight","in","zip","(","weights",",","[","3","*","i","for","i","in","[","0.725",",","0.225",",","0.05","]","]",")",":","self.assertAlmostEqual","(","weight",",","expected_weight",",","1",")","self.assertEqual","(","len","(","gen_metadata","[","``","arms_to_weights","''","]",")",",","4",")"]
29
58
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 2 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.test_ThompsonSampler() without return types
159
node_id 2
9,536
setUp
ThompsonSamplerTest
TestCase
true
self
null
null
null
null
null
def setUp(self) -> None: self.Xs = [ [[1, 1], [2, 2], [3, 3], [4, 4]] ] # 4 arms, each of dimensionality 2 self.Ys = [[1, 2, 3, 4]] self.Yvars = [[1, 1, 1, 1]] self.parameter_values = [[1, 2, 3, 4], [1, 2, 3, 4]] self.outcome_names = ["x", "y"] # not used for regular TS self.multiple_metrics_Xs = [ [[1, 1], [2, 2], [3, 3], [4, 4]], [[1, 1], [2, 2], [3, 3], [4, 4]], ] # 2 metrics, 4 arms, each of dimensionality 2 self.multiple_metrics_Ys = [[1, 2, 3, 4], [0, 0, 0, 1]] self.multiple_metrics_Yvars = [[1, 1, 1, 1], [1, 1, 1, 1]]
["def","setUp","(","self",")","-",">","None",":","self.Xs","=","[","[","[","1",",","1","]",",","[","2",",","2","]",",","[","3",",","3","]",",","[","4",",","4","]","]","]","#","4","arms",",","each","of","dimensionality","2","self.Ys","=","[","[","1",",","2",",","3",",","4","]","]","self.Yvars","=","[","[","1",",","1",",","1",",","1","]","]","self.parameter_values","=","[","[","1",",","2",",","3",",","4","]",",","[","1",",","2",",","3",",","4","]","]","self.outcome_names","=","[","``","x","''",",","``","y","''","]","#","not","used","for","regular","TS","self.multiple_metrics_Xs","=","[","[","[","1",",","1","]",",","[","2",",","2","]",",","[","3",",","3","]",",","[","4",",","4","]","]",",","[","[","1",",","1","]",",","[","2",",","2","]",",","[","3",",","3","]",",","[","4",",","4","]","]",",","]","#","2","metrics",",","4","arms",",","each","of","dimensionality","2","self.multiple_metrics_Ys","=","[","[","1",",","2",",","3",",","4","]",",","[","0",",","0",",","0",",","1","]","]","self.multiple_metrics_Yvars","=","[","[","1",",","1",",","1",",","1","]",",","[","1",",","1",",","1",",","1","]","]"]
15
27
null
test_thompson.py
Ax/ax/models/tests/test_thompson.py
import numpy from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase
15
1
4
0
1
9
1
Use image node_id 1 for calling the ThompsonSamplerTest obj's underlying member method code with example usage: obj.setUp() without return types
144
node_id 1
9,535
test_decimals_0_1
TestHighConfidence
unittest
true
self
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
Test with cutoff of 0.1.
["Test","with","cutoff","of","0.1","."]
null
def test_decimals_0_1(self): """ Test with cutoff of 0.1. """ (_, _), (x_test, _) = self.mnist classifier = get_image_classifier_kr_tf() preds = classifier.predict(x_test[0:1]) postprocessor = HighConfidence(cutoff=0.1) post_preds = postprocessor(preds=preds) classifier_prediction_expected = np.asarray( [ [ 0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757, ] ], dtype=np.float32, ) post_classifier_prediction_expected = np.asarray( [ [ 0.12109935, 0.0, 0.0, 0.0, 0.11366928, 0.0, 0.0, 0.30685693, 0.0, 0.0, ] ], dtype=np.float32, ) np.testing.assert_array_almost_equal( preds, classifier_prediction_expected, decimal=4 ) np.testing.assert_array_almost_equal( post_preds, post_classifier_prediction_expected, decimal=4 )
["def","test_decimals_0_1","(","self",")",":","``","''","''","Test","with","cutoff","of","0.1.","``","''","''","(","_",",","_",")",",","(","x_test",",","_",")","=","self.mnist","classifier","=","get_image_classifier_kr_tf","(",")","preds","=","classifier.predict","(","x_test","[","0:1","]",")","postprocessor","=","HighConfidence","(","cutoff=0.1",")","post_preds","=","postprocessor","(","preds=preds",")","classifier_prediction_expected","=","np.asarray","(","[","[","0.12109935",",","0.0498215",",","0.0993958",",","0.06410096",",","0.11366928",",","0.04645343",",","0.06419807",",","0.30685693",",","0.07616714",",","0.05823757",",","]","]",",","dtype=np.float32",",",")","post_classifier_prediction_expected","=","np.asarray","(","[","[","0.12109935",",","0.0",",","0.0",",","0.0",",","0.11366928",",","0.0",",","0.0",",","0.30685693",",","0.0",",","0.0",",","]","]",",","dtype=np.float32",",",")","np.testing.assert_array_almost_equal","(","preds",",","classifier_prediction_expected",",","decimal=4",")","np.testing.assert_array_almost_equal","(","post_preds",",","post_classifier_prediction_expected",",","decimal=4",")"]
44
76
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 3 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.test_decimals_0_1() without return types
155
node_id 3
235,298
test_decimals_0_2
TestHighConfidence
unittest
true
self
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
Test with cutoff of 0.2.
["Test","with","cutoff","of","0.2","."]
null
def test_decimals_0_2(self): """ Test with cutoff of 0.2. """ (_, _), (x_test, _) = self.mnist classifier = get_image_classifier_kr_tf() preds = classifier.predict(x_test[0:1]) postprocessor = HighConfidence(cutoff=0.2) post_preds = postprocessor(preds=preds) classifier_prediction_expected = np.asarray( [ [ 0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757, ] ], dtype=np.float32, ) post_classifier_prediction_expected = np.asarray( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.30685693, 0.0, 0.0]], dtype=np.float32, ) np.testing.assert_array_almost_equal( preds, classifier_prediction_expected, decimal=4 ) np.testing.assert_array_almost_equal( post_preds, post_classifier_prediction_expected, decimal=4 )
["def","test_decimals_0_2","(","self",")",":","``","''","''","Test","with","cutoff","of","0.2.","``","''","''","(","_",",","_",")",",","(","x_test",",","_",")","=","self.mnist","classifier","=","get_image_classifier_kr_tf","(",")","preds","=","classifier.predict","(","x_test","[","0:1","]",")","postprocessor","=","HighConfidence","(","cutoff=0.2",")","post_preds","=","postprocessor","(","preds=preds",")","classifier_prediction_expected","=","np.asarray","(","[","[","0.12109935",",","0.0498215",",","0.0993958",",","0.06410096",",","0.11366928",",","0.04645343",",","0.06419807",",","0.30685693",",","0.07616714",",","0.05823757",",","]","]",",","dtype=np.float32",",",")","post_classifier_prediction_expected","=","np.asarray","(","[","[","0.0",",","0.0",",","0.0",",","0.0",",","0.0",",","0.0",",","0.0",",","0.30685693",",","0.0",",","0.0","]","]",",","dtype=np.float32",",",")","np.testing.assert_array_almost_equal","(","preds",",","classifier_prediction_expected",",","decimal=4",")","np.testing.assert_array_almost_equal","(","post_preds",",","post_classifier_prediction_expected",",","decimal=4",")"]
78
110
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 4 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.test_decimals_0_2() without return types
155
node_id 4
235,299
test_binary_decimals_0_5
TestHighConfidence
unittest
true
self
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
Test with cutoff of 0.5 for binary classifier.
["Test","with","cutoff","of","0.5","for","binary","classifier","."]
null
def test_binary_decimals_0_5(self): """ Test with cutoff of 0.5 for binary classifier. """ (_, _), (x_test, _) = self.mnist classifier = get_image_classifier_kr_tf_binary() preds = classifier.predict(x_test[0:1]) postprocessor = HighConfidence(cutoff=0.5) post_preds = postprocessor(preds=preds) classifier_prediction_expected = np.asarray( [[0.5301345]], dtype=np.float32 ) post_classifier_prediction_expected = np.asarray( [[0.5301345]], dtype=np.float32 ) np.testing.assert_array_almost_equal( preds, classifier_prediction_expected, decimal=4 ) np.testing.assert_array_almost_equal( post_preds, post_classifier_prediction_expected, decimal=4 )
["def","test_binary_decimals_0_5","(","self",")",":","``","''","''","Test","with","cutoff","of","0.5","for","binary","classifier.","``","''","''","(","_",",","_",")",",","(","x_test",",","_",")","=","self.mnist","classifier","=","get_image_classifier_kr_tf_binary","(",")","preds","=","classifier.predict","(","x_test","[","0:1","]",")","postprocessor","=","HighConfidence","(","cutoff=0.5",")","post_preds","=","postprocessor","(","preds=preds",")","classifier_prediction_expected","=","np.asarray","(","[","[","0.5301345","]","]",",","dtype=np.float32",")","post_classifier_prediction_expected","=","np.asarray","(","[","[","0.5301345","]","]",",","dtype=np.float32",")","np.testing.assert_array_almost_equal","(","preds",",","classifier_prediction_expected",",","decimal=4",")","np.testing.assert_array_almost_equal","(","post_preds",",","post_classifier_prediction_expected",",","decimal=4",")"]
112
126
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 5 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.test_binary_decimals_0_5() without return types
162
node_id 5
235,300
test_RandomModelGenSamples
RandomModelTest
TestCase
true
self
null
null
null
null
null
def test_RandomModelGenSamples(self) -> None: with self.assertRaises(NotImplementedError): self.random_model._gen_samples(n=1, tunable_d=1)
["def","test_RandomModelGenSamples","(","self",")","-",">","None",":","with","self.assertRaises","(","NotImplementedError",")",":","self.random_model._gen_samples","(","n=1",",","tunable_d=1",")"]
25
27
null
test_random.py
Ax/ax/models/tests/test_random.py
import numpy import torch from ax.models.random.base import RandomModel from ax.utils.common.testutils import TestCase from ax.utils.common.typeutils import not_none
15
1
5
0
1
8
1
Use image node_id 3 for calling the RandomModelTest obj's underlying member method code with example usage: obj.test_RandomModelGenSamples() without return types
161
node_id 3
9,512
test_binary_decimals_0_6
TestHighConfidence
unittest
true
self
A unittest class for testing the HighConfidence postprocessor.
["A","unittest","class","for","testing","the","HighConfidence","postprocessor","."]
Test with cutoff of 0.6 for binary classifier.
["Test","with","cutoff","of","0.6","for","binary","classifier","."]
null
def test_binary_decimals_0_6(self): """ Test with cutoff of 0.6 for binary classifier. """ (_, _), (x_test, _) = self.mnist classifier = get_image_classifier_kr_tf_binary() preds = classifier.predict(x_test[0:1]) postprocessor = HighConfidence(cutoff=0.6) post_preds = postprocessor(preds=preds) classifier_prediction_expected = np.asarray( [[0.5301345]], dtype=np.float32 ) post_classifier_prediction_expected = np.asarray( [[0.0]], dtype=np.float32 ) np.testing.assert_array_almost_equal( preds, classifier_prediction_expected, decimal=4 ) np.testing.assert_array_almost_equal( post_preds, post_classifier_prediction_expected, decimal=4 )
["def","test_binary_decimals_0_6","(","self",")",":","``","''","''","Test","with","cutoff","of","0.6","for","binary","classifier.","``","''","''","(","_",",","_",")",",","(","x_test",",","_",")","=","self.mnist","classifier","=","get_image_classifier_kr_tf_binary","(",")","preds","=","classifier.predict","(","x_test","[","0:1","]",")","postprocessor","=","HighConfidence","(","cutoff=0.6",")","post_preds","=","postprocessor","(","preds=preds",")","classifier_prediction_expected","=","np.asarray","(","[","[","0.5301345","]","]",",","dtype=np.float32",")","post_classifier_prediction_expected","=","np.asarray","(","[","[","0.0","]","]",",","dtype=np.float32",")","np.testing.assert_array_almost_equal","(","preds",",","classifier_prediction_expected",",","decimal=4",")","np.testing.assert_array_almost_equal","(","post_preds",",","post_classifier_prediction_expected",",","decimal=4",")"]
128
142
null
test_high_confidence.py
adversarial-robustness-toolbox/tests/defences/test_high_confidence.py
import logging import unittest import numpy from art.defences.postprocessor import HighConfidence from art.utils import load_dataset from tests.utils import master_seed, get_image_classifier_kr_tf, get_image_classifier_kr_tf_binary
15
1
6
0
1
7
1
Use image node_id 6 for calling the TestHighConfidence obj's underlying member method code with example usage: obj.test_binary_decimals_0_6() without return types
162
node_id 6
235,301
convert
Converter
ImageConverter
true
self,_from,_to
null
null
Converts the image from SVG to PDF using chrome.
["Converts","the","image","from","SVG","to","PDF","using","chrome","."]
True
def convert(self, _from: str, _to: str) -> bool: """Converts the image from SVG to PDF using chrome.""" with open(_from, "r") as f: svg = f.read() HTML = ( "<html><head><style>body {margin: 0; }</style><script>function init() {const element = document.querySelector('svg');const positionInfo = element.getBoundingClientRect();const height = positionInfo.height;const width = positionInfo.width;const style = document.createElement('style');style.innerHTML = `@page {margin: 0; size: ${width}px ${height}px}`;document.head.appendChild(style); }window.onload = init;</script></head><body>%s</body></html>" % (svg) ) temp_name = f"{_from}.html" with open(temp_name, "w") as f: f.write(HTML) chromium = self.chromium_command() code = self.command_runner(chromium, _to, temp_name) if code != 0: chrome = self.chrome_command() code = self.command_runner(chrome, _to, temp_name) if code != 0: logger.error( "Fail to convert svg to pdf. Make sure Chromium or Chrome is installed." ) exit(1) return True
["def","convert","(","self",",","_from",":","str",",","_to",":","str",")","-",">","bool",":","``","''","''","Converts","the","image","from","SVG","to","PDF","using","chrome",".","''","''","''","with","open","(","_from",",","``","r","''",")","as","f",":","svg","=","f.read","(",")","HTML","=","(","``","<","html",">","<","head",">","<","style",">","body","{","margin",":","0",";","}","<","\/style",">","<","script",">","function","init","(",")","{","const","element","=","document.querySelector","(","'svg","'",")",";","const","positionInfo","=","element.getBoundingClientRect","(",")",";","const","height","=","positionInfo.height",";","const","width","=","positionInfo.width",";","const","style","=","document.createElement","(","'style","'",")",";","style.innerHTML","=","`","@","page","{","margin",":","0",";","size",":","$","{","width","}","px","$","{","height","}","px","}","`",";","document.head.appendChild","(","style",")",";","}","window.onload","=","init",";","<","\/script",">","<","\/head",">","<","body",">","%","s","<","\/body",">","<","\/html",">","''","%","(","svg",")",")","temp_name","=","f","''","{","_from","}",".html","''","with","open","(","temp_name",",","``","w","''",")","as","f",":","f.write","(","HTML",")","chromium","=","self.chromium_command","(",")","code","=","self.command_runner","(","chromium",",","_to",",","temp_name",")","if","code","!","=","0",":","chrome","=","self.chrome_command","(",")","code","=","self.command_runner","(","chrome",",","_to",",","temp_name",")","if","code","!","=","0",":","logger.error","(","``","Fail","to","convert","svg","to","pdf",".","Make","sure","Chromium","or","Chrome","is","installed",".","''",")","exit","(","1",")","return","True"]
71
89
null
convert-svg-to-pdf.py
sympy/doc/ext/convert-svg-to-pdf.py
from __future__ import annotations from sphinx.transforms.post_transforms.images import ImageConverter from sphinx.util import logging import os import platform from typing import Any from sphinx.application import Sphinx
15
1
7
1
1
5
1
Use image node_id 5 for calling the Converter obj's underlying member method code with example usage: obj.convert(_from, _to) and returns: True
143
node_id 5
2,029,278
_setup
RunnerTrafficMetricsMiddleware
null
true
self,metrics_client
null
null
null
null
null
def _setup( self, metrics_client: "PrometheusClient" = Provide[ BentoMLContainer.metrics_client ], ): self.metrics_client = metrics_client self.metrics_request_duration = metrics_client.Histogram( namespace=self.namespace, name="request_duration_seconds", documentation="runner RPC duration in seconds", labelnames=[ "endpoint", "service_name", "service_version", "http_response_code", "runner_name", ], ) self.metrics_request_total = metrics_client.Counter( namespace=self.namespace, name="request_total", documentation="Total number of runner RPC", labelnames=[ "endpoint", "service_name", "service_version", "http_response_code", "runner_name", ], ) self.metrics_request_in_progress = metrics_client.Gauge( namespace=self.namespace, name="request_in_progress", documentation="Total number of runner RPC in progress now", labelnames=[ "endpoint", "service_name", "service_version", "runner_name", ], multiprocess_mode="livesum", ) self._is_setup = True
["def","_setup","(","self",",","metrics_client",":","``","PrometheusClient","''","=","Provide","[","BentoMLContainer.metrics_client","]",",",")",":","self.metrics_client","=","metrics_client","self.metrics_request_duration","=","metrics_client.Histogram","(","namespace=self.namespace",",","name=","''","request_duration_seconds","''",",","documentation=","''","runner","RPC","duration","in","seconds","''",",","labelnames=","[","``","endpoint","''",",","``","service_name","''",",","``","service_version","''",",","``","http_response_code","''",",","``","runner_name","''",",","]",",",")","self.metrics_request_total","=","metrics_client.Counter","(","namespace=self.namespace",",","name=","''","request_total","''",",","documentation=","''","Total","number","of","runner","RPC","''",",","labelnames=","[","``","endpoint","''",",","``","service_name","''",",","``","service_version","''",",","``","http_response_code","''",",","``","runner_name","''",",","]",",",")","self.metrics_request_in_progress","=","metrics_client.Gauge","(","namespace=self.namespace",",","name=","''","request_in_progress","''",",","documentation=","''","Total","number","of","runner","RPC","in","progress","now","''",",","labelnames=","[","``","endpoint","''",",","``","service_name","''",",","``","service_version","''",",","``","runner_name","''",",","]",",","multiprocess_mode=","''","livesum","''",",",")","self._is_setup","=","True"]
150
187
null
instruments.py
BentoML/src/bentoml/_internal/server/http/instruments.py
from __future__ import annotations import contextvars import logging from timeit import default_timer from typing import TYPE_CHECKING from simple_di import Provide from simple_di import inject from ...configuration.containers import BentoMLContainer from ...context import component_context
15
2
9
0
0
2
null
Use image node_id 2 for calling the RunnerTrafficMetricsMiddleware obj's underlying member method code with example usage: obj._setup(metrics_client) without return types
170
node_id 2
14,515
command_runner
Converter
ImageConverter
true
self,chrome,_to,temp_name
null
null
null
null
os,int
def command_runner( self, chrome: str | None, _to: str, temp_name: str ) -> int: if not chrome: return 1 command = f"{chrome} --headless --disable-gpu --disable-software-rasterizer --print-to-pdf={_to} {temp_name}" logger.error(command) return os.system(command)
["def","command_runner","(","self",",","chrome",":","str","|","None",",","_to",":","str",",","temp_name",":","str",")","-",">","int",":","if","not","chrome",":","return","1","command","=","f","''","{","chrome","}","--","headless","--","disable-gpu","--","disable-software-rasterizer","--","print-to-pdf=","{","_to","}","{","temp_name","}","''","logger.error","(","command",")","return","os.system","(","command",")"]
64
69
null
convert-svg-to-pdf.py
sympy/doc/ext/convert-svg-to-pdf.py
from __future__ import annotations from sphinx.transforms.post_transforms.images import ImageConverter from sphinx.util import logging import os import platform from typing import Any from sphinx.application import Sphinx
15
1
7
1
1
5
1
Use image node_id 4 for calling the Converter obj's underlying member method code with example usage: obj.command_runner(chrome, _to, temp_name) and returns: os, int
165
node_id 4
2,029,277
chromium_command
Converter
ImageConverter
true
self
null
null
null
null
None,None,str,str,str+path+str,path,str
def chromium_command(self) -> str | None: if platform.win32_ver()[0]: if os.system("where chromium") == 0: return "chromium" path = os.path.join( os.environ["PROGRAMW6432"], "Chromium\\Application\\chrome.exe", ) if os.path.exists(path): return f'"{path}"' return None if os.system("chromium --version") == 0: return "chromium" if platform.mac_ver()[0]: path = "/Applications/Chromium.app/Contents/MacOS/Chromium" if os.path.exists(path): return path elif platform.libc_ver()[0]: if os.system("chromium-browser --version") == 0: return "chromium-browser" return None
["def","chromium_command","(","self",")","-",">","str","|","None",":","if","platform.win32_ver","(",")","[","0","]",":","if","os.system","(","``","where","chromium","''",")","==","0",":","return","``","chromium","''","path","=","os.path.join","(","os.environ","[","``","PROGRAMW6432","''","]",",","``","Chromium\\\\Application\\\\chrome.exe","''",",",")","if","os.path.exists","(","path",")",":","return","f","'","''","{","path","}","''","'","return","None","if","os.system","(","``","chromium","--","version","''",")","==","0",":","return","``","chromium","''","if","platform.mac_ver","(",")","[","0","]",":","path","=","``","\/Applications\/Chromium.app\/Contents\/MacOS\/Chromium","''","if","os.path.exists","(","path",")",":","return","path","elif","platform.libc_ver","(",")","[","0","]",":","if","os.system","(","``","chromium-browser","--","version","''",")","==","0",":","return","``","chromium-browser","''","return","None"]
44
61
null
convert-svg-to-pdf.py
sympy/doc/ext/convert-svg-to-pdf.py
from __future__ import annotations from sphinx.transforms.post_transforms.images import ImageConverter from sphinx.util import logging import os import platform from typing import Any from sphinx.application import Sphinx
15
1
7
1
1
5
1
Use image node_id 3 for calling the Converter obj's underlying member method code with example usage: obj.chromium_command() and returns: None, None, str, str, str, path, str, path, str
185
node_id 3
2,029,276
_test_texture_as_input
TestShapeShifter
TestBase
true
self,sign_gradients,use_spectral,soft_clip
null
null
null
null
background, image_frame, y_,current_image
def _test_texture_as_input( self, sign_gradients, use_spectral, soft_clip ): # We must start a new graph tf.reset_default_graph() # Only import if object detection module is available from art.estimators.object_detection.tensorflow_faster_rcnn import ( TensorFlowFasterRCNN, ) from art.attacks.evasion.shapeshifter import ShapeShifter # Define object detector images = tf.Variable( initial_value=np.zeros([1, 28, 28, 1]), dtype=tf.float32 ) obj_dec = TensorFlowFasterRCNN(images=images) # Create labels result = obj_dec.predict(self.x_test_mnist[:1].astype(np.float32)) groundtruth_boxes_list = [result[i]["boxes"] for i in range(1)] groundtruth_classes_list = [result[i]["labels"] for i in range(1)] groundtruth_weights_list = [ np.ones_like(r) for r in groundtruth_classes_list ] y = { "groundtruth_boxes_list": groundtruth_boxes_list, "groundtruth_classes_list": groundtruth_classes_list, "groundtruth_weights_list": groundtruth_weights_list, } # Define random transform def random_transform(x): background = np.random.rand(*x.shape) image_frame = np.random.rand(*(list(x.shape[:-1]) + [4])) y_ = y.copy() y_["groundtruth_boxes_list"][0] = ( y_["groundtruth_boxes_list"][0] + np.random.rand() ) y_["groundtruth_weights_list"][0] = ( y_["groundtruth_weights_list"][0] + np.random.rand() ) return background, image_frame, y_ # Define attack attack = ShapeShifter( estimator=obj_dec, random_transform=random_transform, box_classifier_weight=1.0, box_localizer_weight=1.0, rpn_classifier_weight=1.0, rpn_localizer_weight=1.0, box_iou_threshold=0.3, box_victim_weight=1.0, box_target_weight=1.0, box_victim_cw_weight=1.0, box_victim_cw_confidence=1.0, box_target_cw_weight=1.0, box_target_cw_confidence=1.0, rpn_iou_threshold=0.3, rpn_background_weight=1.0, rpn_foreground_weight=1.0, rpn_cw_weight=1.0, rpn_cw_confidence=1.0, similarity_weight=1.0, learning_rate=0.1, optimizer="MomentumOptimizer", momentum=0.01, decay=0.01, sign_gradients=sign_gradients, random_size=2, max_iter=2, texture_as_input=True, use_spectral=use_spectral, soft_clip=soft_clip, ) # Define rendering function def rendering_function( background_phd, image_frame_phd, current_texture ): current_image = background_phd + current_texture current_image = tf.clip_by_value(current_image, 0, 1) return current_image # Targeted attack adv_x = attack.generate( x=self.x_test_mnist[:1].astype(np.float32), label=y, target_class=2, victim_class=5, rendering_function=rendering_function, ) self.assertTrue(adv_x.shape == (1, 28, 28, 1)) # Untargeted attack adv_x = attack.generate( x=self.x_test_mnist[:1].astype(np.float32), label=y, target_class=8, victim_class=8, rendering_function=rendering_function, ) self.assertTrue(adv_x.shape == (1, 28, 28, 1))
["def","_test_texture_as_input","(","self",",","sign_gradients",",","use_spectral",",","soft_clip",")",":","#","We","must","start","a","new","graph","tf.reset_default_graph","(",")","#","Only","import","if","object","detection","module","is","available","from","art.estimators.object_detection.tensorflow_faster_rcnn","import","(","TensorFlowFasterRCNN",",",")","from","art.attacks.evasion.shapeshifter","import","ShapeShifter","#","Define","object","detector","images","=","tf.Variable","(","initial_value=np.zeros","(","[","1",",","28",",","28",",","1","]",")",",","dtype=tf.float32",")","obj_dec","=","TensorFlowFasterRCNN","(","images=images",")","#","Create","labels","result","=","obj_dec.predict","(","self.x_test_mnist","[",":1","]",".astype","(","np.float32",")",")","groundtruth_boxes_list","=","[","result","[","i","]","[","``","boxes","''","]","for","i","in","range","(","1",")","]","groundtruth_classes_list","=","[","result","[","i","]","[","``","labels","''","]","for","i","in","range","(","1",")","]","groundtruth_weights_list","=","[","np.ones_like","(","r",")","for","r","in","groundtruth_classes_list","]","y","=","{","``","groundtruth_boxes_list","''",":","groundtruth_boxes_list",",","``","groundtruth_classes_list","''",":","groundtruth_classes_list",",","``","groundtruth_weights_list","''",":","groundtruth_weights_list",",","}","#","Define","random","transform","def","random_transform","(","x",")",":","background","=","np.random.rand","(","*","x.shape",")","image_frame","=","np.random.rand","(","*","(","list","(","x.shape","[",":","-1","]",")","+","[","4","]",")",")","y_","=","y.copy","(",")","y_","[","``","groundtruth_boxes_list","''","]","[","0","]","=","(","y_","[","``","groundtruth_boxes_list","''","]","[","0","]","+","np.random.rand","(",")",")","y_","[","``","groundtruth_weights_list","''","]","[","0","]","=","(","y_","[","``","groundtruth_weights_list","''","]","[","0","]","+","np.random.rand","(",")",")","return","background",",","image_frame",",","y_","#","Define","attack","attack","=","ShapeShifter","(","estimator=obj_dec",",","random_transform=random_transform",",","box_classifier_weight=1.0",",","box_localizer_weight=1.0",",","rpn_classifier_weight=1.0",",","rpn_localizer_weight=1.0",",","box_iou_threshold=0.3",",","box_victim_weight=1.0",",","box_target_weight=1.0",",","box_victim_cw_weight=1.0",",","box_victim_cw_confidence=1.0",",","box_target_cw_weight=1.0",",","box_target_cw_confidence=1.0",",","rpn_iou_threshold=0.3",",","rpn_background_weight=1.0",",","rpn_foreground_weight=1.0",",","rpn_cw_weight=1.0",",","rpn_cw_confidence=1.0",",","similarity_weight=1.0",",","learning_rate=0.1",",","optimizer=","''","MomentumOptimizer","''",",","momentum=0.01",",","decay=0.01",",","sign_gradients=sign_gradients",",","random_size=2",",","max_iter=2",",","texture_as_input=True",",","use_spectral=use_spectral",",","soft_clip=soft_clip",",",")","#","Define","rendering","function","def","rendering_function","(","background_phd",",","image_frame_phd",",","current_texture",")",":","current_image","=","background_phd","+","current_texture","current_image","=","tf.clip_by_value","(","current_image",",","0",",","1",")","return","current_image","#","Targeted","attack","adv_x","=","attack.generate","(","x=self.x_test_mnist","[",":1","]",".astype","(","np.float32",")",",","label=y",",","target_class=2",",","victim_class=5",",","rendering_function=rendering_function",",",")","self.assertTrue","(","adv_x.shape","==","(","1",",","28",",","28",",","1",")",")","#","Untargeted","attack","adv_x","=","attack.generate","(","x=self.x_test_mnist","[",":1","]",".astype","(","np.float32",")",",","label=y",",","target_class=8",",","victim_class=8",",","rendering_function=rendering_function",",",")","self.assertTrue","(","adv_x.shape","==","(","1",",","28",",","28",",","1",")",")"]
139
235
null
test_shapeshifter.py
adversarial-robustness-toolbox/tests/attacks/test_shapeshifter.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging import unittest import importlib import tensorflow import numpy from tests.utils import TestBase, master_seed
15
1
7
0
1
6
1
Use image node_id 5 for calling the TestShapeShifter obj's underlying member method code with example usage: obj._test_texture_as_input(sign_gradients, use_spectral, soft_clip) and returns: background, image_frame, y_, current_image
234
node_id 5
234,965
test_check_params
TestShapeShifter
TestBase
true
self
null
null
null
null
null
def test_check_params(self): from art.estimators.object_detection import TensorFlowFasterRCNN from art.attacks.evasion import ShapeShifter images = tf.Variable( initial_value=np.zeros([1, 28, 28, 1]), dtype=tf.float32 ) obj_dec = TensorFlowFasterRCNN(images=images) with self.assertRaises(ValueError): _ = ShapeShifter(obj_dec, random_transform="1") with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_classifier_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_classifier_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_localizer_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_localizer_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_classifier_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_classifier_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_localizer_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_localizer_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_iou_threshold=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_iou_threshold=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_cw_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_cw_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_cw_confidence=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_victim_cw_confidence=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_cw_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_cw_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_cw_confidence=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, box_target_cw_confidence=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_iou_threshold=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_iou_threshold=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_background_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_background_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_foreground_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_foreground_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_cw_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_cw_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_cw_confidence=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, rpn_cw_confidence=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, similarity_weight=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, similarity_weight=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, learning_rate=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, learning_rate=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="test", ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="MomentumOptimizer", momentum=1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="MomentumOptimizer", momentum=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="RMSPropOptimizer", momentum=0.5, decay="1", ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="RMSPropOptimizer", momentum=0.5, decay=-1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, optimizer="RMSPropOptimizer", momentum=0.5, decay=2.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, sign_gradients="true", ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, random_size=1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, random_size=-1, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, max_iter=1.0, ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, max_iter=-1 ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, texture_as_input="true", ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, use_spectral="true", ) with self.assertRaises(ValueError): _ = ShapeShifter( obj_dec, random_transform=lambda x: x + 1e-10, soft_clip="true", )
["def","test_check_params","(","self",")",":","from","art.estimators.object_detection","import","TensorFlowFasterRCNN","from","art.attacks.evasion","import","ShapeShifter","images","=","tf.Variable","(","initial_value=np.zeros","(","[","1",",","28",",","28",",","1","]",")",",","dtype=tf.float32",")","obj_dec","=","TensorFlowFasterRCNN","(","images=images",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=","''","1","''",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_classifier_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_classifier_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_localizer_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_localizer_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_classifier_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_classifier_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_localizer_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_localizer_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_iou_threshold=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_iou_threshold=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_cw_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_cw_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_cw_confidence=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_victim_cw_confidence=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_cw_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_cw_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_cw_confidence=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","box_target_cw_confidence=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_iou_threshold=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_iou_threshold=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_background_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_background_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_foreground_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_foreground_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_cw_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_cw_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_cw_confidence=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","rpn_cw_confidence=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","similarity_weight=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","similarity_weight=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","learning_rate=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","learning_rate=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","test","''",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","MomentumOptimizer","''",",","momentum=1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","MomentumOptimizer","''",",","momentum=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","RMSPropOptimizer","''",",","momentum=0.5",",","decay=","''","1","''",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","RMSPropOptimizer","''",",","momentum=0.5",",","decay=-1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","optimizer=","''","RMSPropOptimizer","''",",","momentum=0.5",",","decay=2.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","sign_gradients=","''","true","''",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","random_size=1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","random_size=-1",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","max_iter=1.0",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","max_iter=-1",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","texture_as_input=","''","true","''",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","use_spectral=","''","true","''",",",")","with","self.assertRaises","(","ValueError",")",":","_","=","ShapeShifter","(","obj_dec",",","random_transform=lambda","x",":","x","+","1e-10",",","soft_clip=","''","true","''",",",")"]
237
380
null
test_shapeshifter.py
adversarial-robustness-toolbox/tests/attacks/test_shapeshifter.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging import unittest import importlib import tensorflow import numpy from tests.utils import TestBase, master_seed
15
1
7
0
1
6
1
Use image node_id 6 for calling the TestShapeShifter obj's underlying member method code with example usage: obj.test_check_params() without return types
153
node_id 6
234,966

Python Copilot Large Coding Dataset

This dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.

Details

Each row contains python code, either a class method or a global function, imported modules, base classes (if any), exceptions (ordered based off the code), returns (ordered based off the code), arguments (ordered based off the code), and more.

  • Rows: 2350782
  • Size: 3.1 GB
  • Data type: text
  • Format: Extracted code using python AST

Schema

{
    "args": "string",
    "class_bases": "string",
    "class_docstr": "string",
    "class_docstr_tok": "string",
    "class_name": "string",
    "code": "string",
    "code_tok": "string",
    "docstr": "string",
    "docstr_tok": "string",
    "file_path": "string",
    "filename": "string",
    "imports": "string",
    "is_member": "bool",
    "label_desc": "string",
    "label_desc_len": "int64",
    "label_id": "string",
    "lend": "int64",
    "lstart": "int64",
    "name": "string",
    "num_all_bases": "float64",
    "num_bases": "float64",
    "num_classes": "float64",
    "num_functions": "int64",
    "num_imports": "int64",
    "num_methods": "float64",
    "raises": "string",
    "returns": "string",
    "total_objects": "int64"
}

How to use the dataset

from datasets import load_dataset

ds = load_dataset("matlok/python-copilot-training-from-many-repos-large", data_dir="files")
Downloads last month
44

Collection including matlok/python-copilot-training-from-many-repos-large