Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Integer value 100000000000000000 not in range: -9007199254740992 to 9007199254740992
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp>
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2116, in cast_array_to_feature
                  return array_cast(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1963, in array_cast
                  return array.cast(pa_type)
                File "pyarrow/array.pxi", line 996, in pyarrow.lib.Array.cast
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/compute.py", line 404, in cast
                  return call_function("cast", [arr], options, memory_pool)
                File "pyarrow/_compute.pyx", line 590, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 385, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Integer value 100000000000000000 not in range: -9007199254740992 to 9007199254740992
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

blockNumber
int64
timestamp
int64
tokenAddress
string
from
string
to
string
value
float64
fileBlock
int64
16,480,746
1,674,612,419
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x0000000000000000000000000000000000000000
0x0000ba9ff5c97f33bd62c216a56b3d02ae6ac4bb
1,000,000,000,000,000,000
26
16,480,778
1,674,612,803
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x0000ba9ff5c97f33bd62c216a56b3d02ae6ac4bb
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
1,000,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
750,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
250,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x707db4f918d0d4555632b59daa1c286e94766a16
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x710e7dbfe197d92a40b2929052befd39475aaf84
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x0b98dd25600bb9a521b1d54c03cf303028c0503d
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x62ec0fee10b49a2cbfc70c24dbb2bd5762dc597d
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x6394c899b65bafa2f38832aaaea2d1f8bdf53b88
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x69fa3e599057930b66d5a66bab7dbc1ed39a80e8
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xf69fccb14f29f17bfc0dd53bb22d0e0afb95c773
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x63a41feb5ef98e0b5e31daf3ba3bec1a2d2ddee7
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x4659c378f1fae26ccc47690b9703c2dbd61ec282
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x15dca998f55cb149a418550e32034950c8729e71
11,249,900,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,749,970,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x2844d03c5b25a2cd3d05eb73871da63b24446eb8
3,266,160,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
1,088,720,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x11c6d083e9b0748be19bfce21115fe9f8ddd7fd9
2,635,520,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
878,506,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x11c6d083e9b0748be19bfce21115fe9f8ddd7fd9
2,604,560,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
868,186,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x71ad0b7557ad330002367f939118cdcaa48bfd2c
15,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
5,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xb40bd8615a2b9292687b5735db242e7953deba01
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xd179d7126e95a9ed359a315e2e3b93126392977d
14,175,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,725,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xe7a6f9d44e175027212c3775854b66de38882336
14,175,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,725,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x4fab169c85876afa470a9f256f59514edcefcfe9
15,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
5,000,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xb52a3094a6dc9a36c372c751ce596a84e46b95e7
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x0f11b24a2c1ec8aec6aea8b5db679cf02cde24c7
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xaa75b925561e6944711b014617767b699c3c4966
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xe95b3f559b9da49fbc3f95976a76d91168d854f8
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x4b2b31b7a32a3d3bb894effc31b16abd400bd258
8,196,760,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,732,250,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xd103855b83ff26e0e6a67a0203e45455f37ca713
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x620a94c66fc27881ed03bcb6d7e4de95f6fc9b17
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x707db4f918d0d4555632b59daa1c286e94766a16
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x707db4f918d0d4555632b59daa1c286e94766a16
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x710e7dbfe197d92a40b2929052befd39475aaf84
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x710e7dbfe197d92a40b2929052befd39475aaf84
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x0b98dd25600bb9a521b1d54c03cf303028c0503d
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x0b98dd25600bb9a521b1d54c03cf303028c0503d
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x62ec0fee10b49a2cbfc70c24dbb2bd5762dc597d
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x62ec0fee10b49a2cbfc70c24dbb2bd5762dc597d
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x6394c899b65bafa2f38832aaaea2d1f8bdf53b88
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x6394c899b65bafa2f38832aaaea2d1f8bdf53b88
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x69fa3e599057930b66d5a66bab7dbc1ed39a80e8
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x69fa3e599057930b66d5a66bab7dbc1ed39a80e8
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0xf69fccb14f29f17bfc0dd53bb22d0e0afb95c773
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0xf69fccb14f29f17bfc0dd53bb22d0e0afb95c773
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x63a41feb5ef98e0b5e31daf3ba3bec1a2d2ddee7
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x63a41feb5ef98e0b5e31daf3ba3bec1a2d2ddee7
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x4659c378f1fae26ccc47690b9703c2dbd61ec282
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x4659c378f1fae26ccc47690b9703c2dbd61ec282
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x15dca998f55cb149a418550e32034950c8729e71
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
8,437,430,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x15dca998f55cb149a418550e32034950c8729e71
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,812,480,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x2844d03c5b25a2cd3d05eb73871da63b24446eb8
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
2,449,620,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x2844d03c5b25a2cd3d05eb73871da63b24446eb8
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
816,539,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xdc1d18df7182b285a69502ab7c08d9a2aa2bdfae
14,925,000,000,000,000
26
16,480,788
1,674,612,923
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,975,000,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a803bad62e4024cce3be42e687596a9e8ae44f7
14,999,900,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
4,999,970,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x000000fc69ed6a4e257a349b04d75a8cf4b8a7c9
9,595,210,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,198,400,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x00000095ccc3d32c74b7873f521a8b461cb7139b
9,010,310,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
3,003,440,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x0000005331b74dca07c35a04892aab5e82a791dc
8,477,330,000,000,000
26
16,480,789
1,674,612,935
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,825,780,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x64d4363661ebe79d6227aa59eefcfe8a47dc92c5
1,703,320,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
567,775,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5cc9362c8ca705be9f0b6ae4834025c772e7839c
6,232,210,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,077,400,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x73f1285ec4bf64d50eed0a836be8d996c43d81b6
1,927,080,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
642,360,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0xec611c3b3be6908b2241fb3667a0794c3451f5bc
1,899,790,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
633,264,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x8a4da389e40682d4d886846c0723cb608317f523
1,873,080,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
624,359,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x38069d467678acb3fbb57bf909a24f8b52bbc112
2,456,860,000,000,000
26
16,480,790
1,674,612,947
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
818,953,000,000,000
26
16,480,791
1,674,612,959
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x581ecbd455f3b92725e346edb611a2e985c630ab
8,820,800,000,000,000
26
16,480,791
1,674,612,959
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
0x9ec9367b8c4dd45ec8e7b800b1f719251053ad60
0x5a3e6a77ba2f983ec0d371ea3b475f8bc0811ad5
2,940,270,000,000,000
26
End of preview.

Towards Neural Scaling Laws for Foundation Models on Temporal Graphs

This repository provides the implementation of the TGS foundation model benchmarking and includes links to temporal networks suitable for foundation model training. TGS introduces a training process for foundation models using various real-world temporal networks, enabling prediction on previously unseen networks.

Overview

Temporal graph learning focuses on predicting future interactions from evolving network data. Our study addresses whether it's possible to predict the evolution of an unseen network within the same domain using observed temporal graphs. We introduce the Temporal Graph Scaling (TGS) dataset, comprising 84 ERC20 token transaction networks collected from 2017 to 2023. To evaluate transferability, we pre-train Temporal Graph Neural Networks (TGNNs) on up to 64 token transaction networks and assess their performance on 20 unseen token types. Our findings reveal that the neural scaling law observed in NLP and Computer Vision also applies to temporal graph learning: pre-training on more networks with more parameters enhances downstream performance. This is the first empirical demonstration of temporal graph transferability. Notably, the largest pre-trained model surpasses fine-tuned TGNNs on unseen test networks, marking a significant step towards building foundation models for temporal graphs. The code and datasets are publicly available.

TGS foundation model performance on unseen networks

Dataset

All extracted transaction networks required for foundation model training can be downloaded here.

The standard ML croissant repository for datasets TGS's metadata is also available here.

The TGS dataset extraction includes: (1) Token Extraction: extracting the token transaction network from our P2P Ethereum live node. (2) Discretizing: creating weekly snapshots for the Discretized Temporal Directed Graph (DTDG) setting. (3) Labeling: assigning labels based on network growth; increasing trends are labeled one, decreasing trends are labeled zero.

TGS dataset extraction

Benchmark Implementation

TGS transaction networks are divided randomly into train and test sets. The train set is used to train foundation models with different sizes; then, the trained models are evaluated on the test set.

TGS foundation model training overview

Prerequisites

  • Python 3.6+
  • Libraries listed in installed_packages.txt
Downloads last month
32