data_source
stringclasses
9 values
question_number
stringlengths
14
17
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
problem
stringlengths
14
1.32k
solution
stringlengths
11
1k
college_math.Matrix_Theory_and_Linear_Algebra
exercise.6.2.6
Recall that the desired matrix has $i^{\text {th }}$ column equal to $\operatorname{proj}_{\mathbf{u}}\left(\mathbf{e}_{i}\right)=\frac{\mathbf{u} \cdot \mathbf{e}_{i}}{\|\mathbf{u}\|^{2}} \mathbf{u}$. Therefore, the matrix is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the matrix for $T(\mathbf{w})=\operatorname{proj}_{\mathbf{v}}(\mathbf{w})$, where $\mathbf{v}=[1,-2,3]^{T}$.
$\boxed{Recall that the desired matrix has $i^{\text {th }}$ column equal to $\operatorname{proj}_{\mathbf{u}}\left(\mathbf{e}_{i}\right)=\frac{\mathbf{u} \cdot \mathbf{e}_{i}}{\|\mathbf{u}\|^{2}} \mathbf{u}$. Therefore, the matrix is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.8.5.5
$A=\left[\begin{array}{rrr}0 & 0 & 2 \\ -1 & 1 & 2 \\ -1 & 0 & 3\end{array}\right]$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $A=\left[\begin{array}{lll}-2 & 0 & 6 \\ -3 & 1 & 6 \\ -3 & 0 & 7\end{array}\right]$. Find a square root of $A$.
$\boxed{A=\left[\begin{array}{rrr}0 & 0 & 2 \\ -1 & 1 & 2 \\ -1 & 0 & 3\end{array}\right]}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.5.3.3
Yes, this is a subspace.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $\mathbf{w}, \mathbf{v}$ be given vectors in $\mathbb{R}^{4}$ and define $$ M=\left\{\mathbf{u}=\left[\begin{array}{l} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{array}\right] \in \mathbb{R}^{4} \mid \mathbf{w} \cdot \mathbf{u}=0 \text { and } \mathbf{v} \cdot \mathbf{u}=0\right\} $$ Is $M$ a subspace of $\mathbb{R}^{4}$ ? Explain.
$\boxed{Yes, this is a subspace.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.7
$h=4$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $h$ such that $$ \left[\begin{array}{ll|l} 2 & h & 4 \\ 3 & 6 & 7 \end{array}\right] $$ is the augmented matrix of an inconsistent system.
$\boxed{h=4$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.6.5
$\cos \theta=\frac{-10}{\sqrt{1+4+1} \sqrt{1+4+49}}$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $\cos \theta$ where $\theta$ is the angle between the vectors $$ \mathbf{u}=\left[\begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right], \mathbf{v}=\left[\begin{array}{r} 1 \\ 2 \\ -7 \end{array}\right] $$
$\boxed{\cos \theta=\frac{-10}{\sqrt{1+4+1} \sqrt{1+4+49}}}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.4.15
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 0\end{array}\right]$. Then $A B=\left[\begin{array}{lll}3 & 4 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B A=\left[\begin{array}{lll}2 & 1 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $3 \times 3$-matrices $A$ and $B$ such that $A B \neq B A$.
$\boxed{A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 0\end{array}\right]$. Then $A B=\left[\begin{array}{lll}3 & 4 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B A=\left[\begin{array}{lll}2 & 1 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.7.15
It means that if you place them so that they all have their tails at the same point, the three will lie in the same plane.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
What does it mean geometrically if the box product of three vectors equals zero?
$\boxed{It means that if you place them so that they all have their tails at the same point, the three will lie in the same plane.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.24
Yes. It has a unique solution.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose the coefficient matrix of a system of $n$ equations with $n$ variables has the property that every column is a pivot column. Does it follow that the system of equations must have a solution? If so, must the solution be unique? Explain.
$\boxed{Yes. It has a unique solution.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.1.3
We need $5 x-3 y=2 x-2 y$ and $4=2 y$. The unique solution is $x=\frac{2}{3}$ and $y=2$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $x$ and $y$ so that $\mathbf{u}=[5 x-3 y, 4]^{T}$ and $\mathbf{v}=[2 x-2 y, 2 y]^{T}$ are equal in $\mathbb{R}^{2}$.
$\boxed{We need $5 x-3 y=2 x-2 y$ and $4=2 y$. The unique solution is $x=\frac{2}{3}$ and $y=2$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.9.4.6
Yes, because the set of 5 linearly independent vectors can be extended to a basis $B$ of $V$. But since $V$ is 5-dimensional, $B$ has only 5 elements, which must be the original 5 vectors.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $V$ be a 5-dimensional vector space. If you have 5 linearly independent vectors in $V$, can you conclude that the vectors span $V$ ?
$\boxed{Yes, because the set of 5 linearly independent vectors can be extended to a basis $B$ of $V$. But since $V$ is 5-dimensional, $B$ has only 5 elements, which must be the original 5 vectors.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.4.1
The best approximation is $\mathbf{v}^{\prime}=3 \mathbf{u}_{1}-\mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 5 \\ 2\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider $\mathbb{R}^{3}$ with the usual dot product. Let $$ \mathbf{u}_{1}=\left[\begin{array}{r} -1 \\ 1 \\ 1 \end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r} -1 \\ -2 \\ 1 \end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{r} -1 \\ 5 \\ 3 \end{array}\right] $$ Note that $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$ are orthogonal. Find the best approximation of $\mathbf{v}$ in $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
$\boxed{The best approximation is $\mathbf{v}^{\prime}=3 \mathbf{u}_{1}-\mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 5 \\ 2\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.3.5
$(x, y, z)=(4,1,1)$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the following system of equations by back substitution. $$ \begin{array}{r} x+3 y-2 z=5 \\ y+3 z=4 \\ z=1 . \end{array} $$
$\boxed{(x, y, z)=(4,1,1)$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.9
Any $h$ will work.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $h$ such that $$ \left[\begin{array}{ll|r} 1 & 1 & 4 \\ 3 & h & 12 \end{array}\right] $$ is the augmented matrix of a consistent system.
$\boxed{Any $h$ will work.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.5.6
Solution is: $[x=4, y=-4, z=-2]$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Use Gauss-Jordan elimination to solve the system of equations $-19 x+8 y=-108,-71 x+$ $30 y=-404,-2 x+y=-12,4 x+z=14$.
$\boxed{Solution is: $[x=4, y=-4, z=-2]}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.5.3
$y=2+2 x$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the points $\left(x_{1}, y_{1}\right)=(-1,0),\left(x_{2}, y_{2}\right)=(0,3),\left(x_{3}, y_{3}\right)=(1,3),\left(x_{4}, y_{4}\right)=(2,5)$, $\left(x_{5}, y_{5}\right)=(3,9)$. Find the least squares line for these points.
$\boxed{y=2+2 x$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.3.2
$\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right]$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
In $\mathbb{R}^{4}$ with the usual dot product, find an orthogonal basis for $$ \operatorname{span}\left\{\left[\begin{array}{l} 0 \\ 1 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{c} 3 \\ 0 \\ 2 \\ -1 \end{array}\right]\right\} $$
$\boxed{\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right]}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.13
The solution is: $x=\frac{1}{3}-\frac{1}{3} t, y=\frac{2}{3}+\frac{2}{3} t, z=\frac{1}{3}, w=t$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Determine if the system is consistent. If so, is the solution unique? $$ \begin{gathered} x+2 y+z-w=2 \\ x-y+z+w=0 \\ 2 x+y-z=1 \\ 4 x+2 y+z=3 \end{gathered} $$
$\boxed{The solution is: $x=\frac{1}{3}-\frac{1}{3} t, y=\frac{2}{3}+\frac{2}{3} t, z=\frac{1}{3}, w=t$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.5.2.14
From $a(\mathbf{u}+\mathbf{v})+b(\mathbf{u}+\mathbf{w})+c(\mathbf{w}+\mathbf{v})=\mathbf{0}$ we get $(a+b) \mathbf{u}+(a+c) \mathbf{v}+(b+c) \mathbf{w}=\mathbf{0}$. Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, this last system has only the trivial solution, so $a+b=0, a+c=0$, and $b+c=0$. Solving, we find the unique solution $(a, b, c)=(0,0,0)$. So the vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{w}$, and $\mathbf{w}+\mathbf{v}$ are linearly independent.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be linearly independent vectors in $\mathbb{R}^{n}$. Are the vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{w}$, and $\mathbf{w}+\mathbf{v}$ linearly independent?
$\boxed{From $a(\mathbf{u}+\mathbf{v})+b(\mathbf{u}+\mathbf{w})+c(\mathbf{w}+\mathbf{v})=\mathbf{0}$ we get $(a+b) \mathbf{u}+(a+c) \mathbf{v}+(b+c) \mathbf{w}=\mathbf{0}$. Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, this last system has only the trivial solution, so $a+b=0, a+c=0$, and $b+c=0$. Solving, we find the unique solution $(a, b, c)=(0,0,0)$. So the vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{w}$, and $\mathbf{w}+\mathbf{v}$ are linearly independent.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.21
Solution is: $[x=1, y=2, z=-5]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the system of equations $8 x+2 y+3 z=-3,8 x+3 y+3 z=-1$, and $4 x+y+3 z=-9$.
$\boxed{Solution is: $[x=1, y=2, z=-5]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.7.7
Let $P=(1,2,3), Q=(2,3,4)$, and $R=(3,4,5) . \overrightarrow{P Q} \times \overrightarrow{P R}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \times\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. The area of the triangle is 0. It means the three points are on a line.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the area of the triangle determined by the three points, $(1,2,3),(2,3,4)$ and $(3,4,5)$. Did something interesting happen here? What does it mean geometrically?
$\boxed{Let $P=(1,2,3), Q=(2,3,4)$, and $R=(3,4,5) . \overrightarrow{P Q} \times \overrightarrow{P R}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \times\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. The area of the triangle is 0. It means the three points are on a line.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.6.1
$\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 3\end{array}\right]=17$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 3\end{array}\right]$.
$\boxed{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 3\end{array}\right]=17}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.4
There might be a solution. If so, there are infinitely many.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the following augmented matrix in which $*$ denotes an arbitrary number and $\mathbf{I}$ denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is the solution unique? $$ \left[\begin{array}{ccccc|c} \mathbf{\square} & * & * & * & * & * \\ 0 & \mathbf{\square} & * & * & 0 & * \\ 0 & 0 & 0 & 0 & \mathbf{\square} & 0 \\ 0 & 0 & 0 & 0 & * & \mathbf{\square} \end{array}\right] $$
$\boxed{There might be a solution. If so, there are infinitely many.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.2.2
$f_{1} \perp f_{2}, f_{1} \perp f_{4}, f_{2} \perp f_{3}$, and $f_{3} \perp f_{4}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
On $C[-1,1]$, which of the following functions are orthogonal to each other? $$ f_{1}(x)=x, \quad f_{2}(x)=x^{2}, \quad f_{3}(x)=x^{3}-x, \quad f_{4}(x)=1-x^{4} . $$
$\boxed{f_{1} \perp f_{2}, f_{1} \perp f_{4}, f_{2} \perp f_{3}$, and $f_{3} \perp f_{4}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.5.1
$(x, y, z)=(-1,-1,2)$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the least squares approximation for the system of equations $$ \begin{array}{rr} x+2 y+2 z= & 5, \\ x+y-z= & 11, \\ x+2 y-z= & -18 \\ 2 x-y+2 z= & 0 . \end{array} $$
$\boxed{(x, y, z)=(-1,-1,2)$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.5.2
$(x, y, z)=(2,2,-1)$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the least squares approximation for the system of equations $$ \left[\begin{array}{rrr} -1 & 2 & 1 \\ -1 & 0 & -1 \\ 2 & 0 & 2 \\ 0 & 0 & 2 \\ 1 & 2 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 1 \\ 1 \\ 3 \\ -2 \\ 4 \end{array}\right] $$
$\boxed{(x, y, z)=(2,2,-1)$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.18
Solution is: $[x=2-4 t, y=-8 t, z=t]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the system of equations $3 x-y+4 z=6, y+8 z=0$, and $-2 x+y=-4$.
$\boxed{Solution is: $[x=2-4 t, y=-8 t, z=t]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.9.8
The principal axes are $\frac{1}{\sqrt{3}}\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the principal axes of the ellipsoid $2 x^{2}+2 y^{2}+3 z^{2}+2 x z-2 y z$.
$\boxed{The principal axes are $\frac{1}{\sqrt{3}}\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.7.6.6
No. It has non-zero determinant $\operatorname{det}(A)=\cos ^{2} t+\sin ^{2} t=1$ for all $t$, so it is invertible for all $t$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the matrix $$ A=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{array}\right] $$ Does there exist a value of t for which this matrix fails to be invertible? Explain.
$\boxed{No. It has non-zero determinant $\operatorname{det}(A)=\cos ^{2} t+\sin ^{2} t=1$ for all $t$, so it is invertible for all $t$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.8.4.4
The eigenvectors and eigenvalues are: $$ \left\{\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right]\right\} \text { for eigenvalue }-3, \quad\left\{\left[\begin{array}{c} -2 \\ 1 \\ 1 \end{array}\right]\right\} \text { for eigenvalue } 3, \quad\left\{\left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right]\right\} \text { for eigenvalue }-2 $$ The matrix $P$ needed to diagonalize the above matrix is $$ \left[\begin{array}{rrr} 0 & -2 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] $$ and the diagonal matrix $D$ is $$ \left[\begin{array}{rrr} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{array}\right] $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the eigenvalues and eigenvectors of the matrix $$ \left[\begin{array}{rrr} 8 & 0 & 10 \\ -6 & -3 & -6 \\ -5 & 0 & -7 \end{array}\right] \text {. } $$ One eigenvalue is -3. Diagonalize if possible.
$\boxed{The eigenvectors and eigenvalues are: $$ \left\{\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right]\right\} \text { for eigenvalue }-3, \quad\left\{\left[\begin{array}{c} -2 \\ 1 \\ 1 \end{array}\right]\right\} \text { for eigenvalue } 3, \quad\left\{\left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right]\right\} \text { for eigenvalue }-2 $$ The matrix $P$ needed to diagonalize the above matrix is $$ \left[\begin{array}{rrr} 0 & -2 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] $$ and the diagonal matrix $D$ is $$ \left[\begin{array}{rrr} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{array}\right] }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.4.14
$A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $2 \times 2$-matrices $A$ and $B$ such that $A \neq 0$ and $B \neq 0$, but $A B=0$.
$\boxed{A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.6.2.7
$$ \frac{1}{35}\left[\begin{array}{rrr} 1 & 5 & 3 \\ 5 & 25 & 15 \\ 3 & 15 & 9 \end{array}\right] $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the matrix for $T(\mathbf{w})=\operatorname{proj}_{\mathbf{v}}(\mathbf{w})$, where $\mathbf{v}=[1,5,3]^{T}$.
$\boxed{ \frac{1}{35}\left[\begin{array}{rrr} 1 & 5 & 3 \\ 5 & 25 & 15 \\ 3 & 15 & 9 \end{array}\right] }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.25
The last column must not be a pivot column. The remaining columns must each be pivot columns.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose there is a unique solution to a system of linear equations. What must be true of the pivot columns in the augmented matrix?
$\boxed{The last column must not be a pivot column. The remaining columns must each be pivot columns.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.5.20
The matrix $A$ is right invertible. Two possible right inverses are $$ \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \\ 0 & 0 \end{array}\right] \text { and }\left[\begin{array}{cc} -2 & 1 \\ 0 & 1 \\ 1 & -1 \end{array}\right] $$ The matrices $B$ and $C$ are not right invertible. The matrix $D$ is right invertible with inverse $$ \left[\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right] $$ Since $D$ is square, its right inverse is actually an inverse, and therefore unique.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Which of the following matrices is right invertible? Find a right inverse if one exists. If possible, find two different right inverses. $$ A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \end{array}\right] \quad B=\left[\begin{array}{lll} 1 & 1 & 2 \\ 2 & 2 & 4 \end{array}\right] \quad C=\left[\begin{array}{ll} 1 & 2 \\ 1 & 0 \\ 0 & 1 \end{array}\right] \quad D=\left[\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}\right] $$
$\boxed{The matrix $A$ is right invertible. Two possible right inverses are $$ \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \\ 0 & 0 \end{array}\right] \text { and }\left[\begin{array}{cc} -2 & 1 \\ 0 & 1 \\ 1 & -1 \end{array}\right] $$ The matrices $B$ and $C$ are not right invertible. The matrix $D$ is right invertible with inverse $$ \left[\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right] $$ Since $D$ is square, its right inverse is actually an inverse, and therefore unique.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.4.2
The best approximation is $\mathbf{v}^{\prime}=\mathbf{u}_{1}+2 \mathbf{u}_{2}-\mathbf{u}_{3}=\left[\begin{array}{r}1 \\ 3 \\ -2 \\ 4\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider $\mathbb{R}^{4}$ with the usual dot product. Let $$ \mathbf{u}_{1}=\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 3 \end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l} 1 \\ 1 \\ 0 \\ 0 \end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r} 1 \\ -1 \\ 3 \\ -1 \end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{r} 6 \\ -2 \\ -5 \\ 5 \end{array}\right] $$ Note that $\mathbf{u}_{1}, \mathbf{u}_{2}$, and $\mathbf{u}_{3}$ are orthogonal. Find the best approximation of $\mathbf{v}$ in $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
$\boxed{The best approximation is $\mathbf{v}^{\prime}=\mathbf{u}_{1}+2 \mathbf{u}_{2}-\mathbf{u}_{3}=\left[\begin{array}{r}1 \\ 3 \\ -2 \\ 4\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.7.6.9
$$ \operatorname{det}\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right]=5 e^{-t} \neq 0 $$ and so this matrix is always invertible.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the matrix $$ A=\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right] $$ Does there exist a value of t for which this matrix fails to be invertible? Explain.
$\boxed{ \operatorname{det}\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right]=5 e^{-t} \neq 0 $$ and so this matrix is always invertible.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.30
These are not legitimate row operations. They do not preserve the solution set of the system.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the system $-5 x+2 y-z=0$ and $-5 x-2 y-z=0$. Both equations equal zero and so $-5 x+2 y-z=-5 x-2 y-z$ which is equivalent to $y=0$. Does it follow that $x$ and $z$ can equal anything? Notice that when $x=1, z=-4$, and $y=0$ are plugged in to the equations, the equations do not equal 0 . Why?
$\boxed{These are not legitimate row operations. They do not preserve the solution set of the system.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.3.1
$(x, y)=(1,0)$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Use elementary operations to solve the system of equations $$ \begin{aligned} & 3 x+y=3 \\ & x+2 y=1 \end{aligned} $$
$\boxed{(x, y)=(1,0)$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.9.3.2
No. It is not closed under scalar multiplication.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the set of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ such that $x+y \geq 0$. Is this a subspace of $\mathbb{R}^{2}$ ?
$\boxed{No. It is not closed under scalar multiplication.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.7.6.11
$$ \left[\begin{array}{ccc} e^{t} & \cos t & \sin t \\ e^{t} & -\sin t & \cos t \\ e^{t} & -\cos t & -\sin t \end{array}\right]^{-1}=\left[\begin{array}{ccc} \frac{1}{2} e^{-t} & 0 & \frac{1}{2} e^{-t} \\ \frac{1}{2} \cos t+\frac{1}{2} \sin t & -\sin t & \frac{1}{2} \sin t-\frac{1}{2} \cos t \\ \frac{1}{2} \sin t-\frac{1}{2} \cos t & \cos t & -\frac{1}{2} \cos t-\frac{1}{2} \sin t \end{array}\right] $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the inverse, if it exists, of the matrix $$ A=\left[\begin{array}{ccc} e^{t} & \cos t & \sin t \\ e^{t} & -\sin t & \cos t \\ e^{t} & -\cos t & -\sin t \end{array}\right] $$
$\boxed{ \left[\begin{array}{ccc} e^{t} & \cos t & \sin t \\ e^{t} & -\sin t & \cos t \\ e^{t} & -\cos t & -\sin t \end{array}\right]^{-1}=\left[\begin{array}{ccc} \frac{1}{2} e^{-t} & 0 & \frac{1}{2} e^{-t} \\ \frac{1}{2} \cos t+\frac{1}{2} \sin t & -\sin t & \frac{1}{2} \sin t-\frac{1}{2} \cos t \\ \frac{1}{2} \sin t-\frac{1}{2} \cos t & \cos t & -\frac{1}{2} \cos t-\frac{1}{2} \sin t \end{array}\right] }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.5.9
$$ \frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{\sqrt{5}}\left[\begin{array}{l} 1 \\ 2 \end{array}\right], \quad \frac{1}{\|\mathbf{v}\|} \mathbf{v}=\frac{1}{\sqrt{17}}\left[\begin{array}{r} -2 \\ 3 \\ 2 \end{array}\right], \quad \frac{1}{\|\mathbf{w}\|} \mathbf{w}=\frac{1}{6}\left[\begin{array}{r} 5 \\ -3 \\ 1 \\ -1 \end{array}\right] $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Normalize the following vectors. $$ \mathbf{u}=\left[\begin{array}{l} 1 \\ 2 \end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r} -2 \\ 3 \\ 2 \end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r} 5 \\ -3 \\ 1 \\ -1 \end{array}\right] $$
$\boxed{ \frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{\sqrt{5}}\left[\begin{array}{l} 1 \\ 2 \end{array}\right], \quad \frac{1}{\|\mathbf{v}\|} \mathbf{v}=\frac{1}{\sqrt{17}}\left[\begin{array}{r} -2 \\ 3 \\ 2 \end{array}\right], \quad \frac{1}{\|\mathbf{w}\|} \mathbf{w}=\frac{1}{6}\left[\begin{array}{r} 5 \\ -3 \\ 1 \\ -1 \end{array}\right] }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.9.1.13
Let $f(i)$ be the $i^{\text {th }}$ component of a vector $\mathbf{x} \in \mathbb{R}^{n}$. Thus a typical element in $\mathbb{R}^{n}$ is $(f(1), \ldots, f(n))$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $X=\{1,2, \ldots, n\}$, and consider the space Func $_{X, \mathbb{R}}$ of real-valued functions defined on $X$. Explain how Func $_{X, \mathbb{R}}$ can be considered as $\mathbb{R}^{n}$.
$\boxed{Let $f(i)$ be the $i^{\text {th }}$ component of a vector $\mathbf{x} \in \mathbb{R}^{n}$. Thus a typical element in $\mathbb{R}^{n}$ is $(f(1), \ldots, f(n))$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.4.3
The system $$ \left[\begin{array}{l} 4 \\ 4 \\ 4 \end{array}\right]=a_{1}\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right]+a_{2}\left[\begin{array}{r} 8 \\ 0 \\ -1 \end{array}\right]+a_{3}\left[\begin{array}{r} 2 \\ -2 \\ 1 \end{array}\right] $$ has no solution.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Decide whether $$ \mathbf{v}=\left[\begin{array}{l} 4 \\ 4 \\ 4 \end{array}\right] $$ is a linear combination of the vectors $$ \mathbf{u}_{1}=\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r} 8 \\ 0 \\ -1 \end{array}\right] \quad \text { and } \quad \mathbf{u}_{3}=\left[\begin{array}{r} 2 \\ -2 \\ 1 \end{array}\right] $$ If yes, find the coefficients.
$\boxed{The system $$ \left[\begin{array}{l} 4 \\ 4 \\ 4 \end{array}\right]=a_{1}\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right]+a_{2}\left[\begin{array}{r} 8 \\ 0 \\ -1 \end{array}\right]+a_{3}\left[\begin{array}{r} 2 \\ -2 \\ 1 \end{array}\right] $$ has no solution.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.8.2.8
Yes. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ works.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Is it possible for a non-zero matrix to have only 0 as an eigenvalue?
$\boxed{Yes. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ works.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.7.1
$X^{T} Y=\left[\begin{array}{rrr}0 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right], X Y^{T}=1$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $X=\left[\begin{array}{lll}-1 & -1 & 1\end{array}\right]$ and $Y=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$. Find $X^{T} Y$ and $X Y^{T}$ if possible.
$\boxed{X^{T} Y=\left[\begin{array}{rrr}0 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right], X Y^{T}=1}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.4.13
$A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], C=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find $2 \times 2$-matrices $A, B$, and $C$ such that $A \neq 0, C \neq B$, but $A C=A B$.
$\boxed{A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], C=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.9.1
Ciphertext: "ZRUJPZVAEJTWOXGJZV".
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Encrypt the message "Rendezvous at dawn" using the Hill cipher with block size 3 and encryption matrix $$ A=\left[\begin{array}{lll} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{array}\right] $$
$\boxed{Ciphertext: "ZRUJPZVAEJTWOXGJZV".}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.5.7
The rank of the coefficient matrix is 3 , so both systems have a unique solution. The solution of the first system is $(x, y, z)=(1,0,1)$, and the solution of the second system is $(x, y, z)=(1,1,2)$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the following two systems of equations simultaneously, by using a single augmented matrix with two constant vectors. $$ \begin{array}{rrr} x+2 y-z=0 & x+2 y-z=1 \\ 2 x+3 y+z=3 & 2 x+3 y+z=7 \\ x-y+2 z=3 & x-y+2 z=4 \end{array} $$
$\boxed{The rank of the coefficient matrix is 3 , so both systems have a unique solution. The solution of the first system is $(x, y, z)=(1,0,1)$, and the solution of the second system is $(x, y, z)=(1,1,2)$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.7.14
Yes. It will involve the sum of a product of integers and so it will be an integer.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose $\mathbf{u}, \mathbf{v}$, and $\mathbf{w}$ are three vectors whose components are all integers. Can you conclude the volume of the parallelepiped determined from these three vectors will always be an integer?
$\boxed{Yes. It will involve the sum of a product of integers and so it will be an integer.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.7.6.7
$\operatorname{det}(A)=\left|\begin{array}{ccc}1 & t & t^{2} \\ 0 & 1 & 2 t \\ t & 0 & 2\end{array}\right|=t^{3}+2$, and so $A$ has no inverse when $t=-\sqrt[3]{2}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the matrix $$ A=\left[\begin{array}{rrr} 1 & t & t^{2} \\ 0 & 1 & 2 t \\ t & 0 & 2 \end{array}\right] $$ Does there exist a value of t for which this matrix fails to be invertible? Explain.
$\boxed{\operatorname{det}(A)=\left|\begin{array}{ccc}1 & t & t^{2} \\ 0 & 1 & 2 t \\ t & 0 & 2\end{array}\right|=t^{3}+2$, and so $A$ has no inverse when $t=-\sqrt[3]{2}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.1.2
$x=2, y=-1, z=2$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find scalars $x, y, z$ such that the following two matrices are equal. $$ \left[\begin{array}{rr} x & -1 \\ 2 & 4 \end{array}\right] \text { and }\left[\begin{array}{ll} 2 & y \\ z & 4 \end{array}\right] $$
$\boxed{x=2, y=-1, z=2$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.7.3
$\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right] \times\left[\begin{array}{r}-7 \\ -2 \\ 2\end{array}\right]=\left[\begin{array}{r}8 \\ -23 \\ 5\end{array}\right]$. The area of the parallelogram is $8 \sqrt{3}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the area of the parallelogram determined by the vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}3 \\ -2 \\ 1\end{array}\right]$.
$\boxed{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right] \times\left[\begin{array}{r}-7 \\ -2 \\ 2\end{array}\right]=\left[\begin{array}{r}8 \\ -23 \\ 5\end{array}\right]$. The area of the parallelogram is $8 \sqrt{3}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.10.4.8
We have $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}, T\left(\mathbf{v}_{2}\right)=\mathbf{0}$, and $T\left(\mathbf{v}_{3}\right)=\mathbf{0}$. Therefore $$ [T]_{B, B}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] . $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $\mathbf{v}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]$ and consider the linear function $T(\mathbf{w})=\operatorname{proj}_{\mathbf{v}}(\mathbf{w})$. Find the matrix of $T$ with respect to the basis $$ B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{r} 1 \\ -2 \\ 3 \end{array}\right],\left[\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{l} 3 \\ 0 \\ 1 \end{array}\right]\right\} $$
$\boxed{We have $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}, T\left(\mathbf{v}_{2}\right)=\mathbf{0}$, and $T\left(\mathbf{v}_{3}\right)=\mathbf{0}$. Therefore $$ [T]_{B, B}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] . }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.10.4.2
$[\mathbf{x}]_{B}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $B=\left\{\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]\right\}$ be a basis of $\mathbb{R}^{3}$ and let $\mathbf{x}=\left[\begin{array}{r}5 \\ -1 \\ 4\end{array}\right]$ be a vector in $\mathbb{R}^{2}$. Find $[\mathbf{x}]_{B}$.
$\boxed{[\mathbf{x}]_{B}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.7.7.5
By Cramer's rule, we have $$ y=\frac{\left|\begin{array}{ccc} 1 & t & 1 \\ 1 & s & t^{2} \\ 1 & 1 & s^{2} \end{array}\right|}{\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & t & t^{2} \\ 1 & s & s^{2} \end{array}\right|}=\frac{s^{3}+t^{3}+1-2-t s^{2}-t^{2}}{t s^{2}+t^{2}+s-t-s t^{2}-s^{2}} . $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the value of $y$ in the following system of equations: $$ \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & t & t^{2} \\ 1 & s & s^{2} \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} t \\ s \\ 1 \end{array}\right] . $$
$\boxed{By Cramer's rule, we have $$ y=\frac{\left|\begin{array}{ccc} 1 & t & 1 \\ 1 & s & t^{2} \\ 1 & 1 & s^{2} \end{array}\right|}{\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & t & t^{2} \\ 1 & s & s^{2} \end{array}\right|}=\frac{s^{3}+t^{3}+1-2-t s^{2}-t^{2}}{t s^{2}+t^{2}+s-t-s t^{2}-s^{2}} . }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.9.3.8
This is not a subspace. $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in it, but $5\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $U=\left\{[x, y, z]^{T} \in \mathbb{R}^{3}|| x \mid \leq 4\right\}$. Is $U$ a subspace of $\mathbb{R}^{3}$ ?
$\boxed{This is not a subspace. $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in it, but $5\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.2
A solution exists and is unique.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the following augmented matrix in which $*$ denotes an arbitrary number and denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is the solution unique? $$ \left[\begin{array}{ccc|c} \mathbf{\square} & * & * & * \\ 0 & \mathbf{0} & * & * \\ 0 & 0 & \mathbf{\square} & * \end{array}\right] $$
$\boxed{A solution exists and is unique.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.5.2
$\sqrt{27}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Find the distance between the points $P=(1,3,-1,0)$ and $Q=(2,2,3,3)$ in $\mathbb{R}^{4}$.
$\boxed{\sqrt{27}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.3.2.2
We have $$ \left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 0 \\ 0 \end{array}\right]+\left(1-r_{1}\right)\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right]+\left(r_{1}+r_{2}\right)\left[\begin{array}{r} -1 \\ -1 \\ 1 \\ 0 \end{array}\right]=\left[\begin{array}{l} 2 \\ 2 \\ 0 \\ 1 \end{array}\right]+r_{1}\left[\begin{array}{r} -2 \\ -1 \\ 1 \\ -1 \end{array}\right]+r_{2}\left[\begin{array}{r} -1 \\ -1 \\ 1 \\ 0 \end{array}\right] . $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the following vector equation for a plane in $\mathbb{R}^{4}$ : $$ \left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 0 \\ 0 \end{array}\right]+t\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right]+s\left[\begin{array}{r} -1 \\ -1 \\ 1 \\ 0 \end{array}\right] . $$ Find a new vector equation for the same plane by doing the change of parameters $t=1-r_{1}, s=r_{1}+r_{2}$.
$\boxed{We have $$ \left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 0 \\ 0 \end{array}\right]+\left(1-r_{1}\right)\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right]+\left(r_{1}+r_{2}\right)\left[\begin{array}{r} -1 \\ -1 \\ 1 \\ 0 \end{array}\right]=\left[\begin{array}{l} 2 \\ 2 \\ 0 \\ 1 \end{array}\right]+r_{1}\left[\begin{array}{r} -2 \\ -1 \\ 1 \\ -1 \end{array}\right]+r_{2}\left[\begin{array}{r} -1 \\ -1 \\ 1 \\ 0 \end{array}\right] . }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.17
Solution is: $[x=1-2 t, z=1, y=t]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the system of equations $7 x+14 y+15 z=22,2 x+4 y+3 z=5$, and $3 x+6 y+10 z=$ 13.
$\boxed{Solution is: $[x=1-2 t, z=1, y=t]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.2.7.8
$(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i}$. However, $\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{0}$ and so the cross product is not associative. The expression $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ has no meaning.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Is $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ ? What is the meaning of $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ ? Explain. Hint: Try $(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}$.
$\boxed{(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i}$. However, $\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{0}$ and so the cross product is not associative. The expression $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ has no meaning.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.8.5.4
$B=\left[\begin{array}{rr}-1 & -2 \\ 3 & 4\end{array}\right]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $A=\left[\begin{array}{rr}-5 & -6 \\ 9 & 10\end{array}\right]$. Find a square root of $A$, i.e., find a matrix $B$ such that $B^{2}=A$.
$\boxed{B=\left[\begin{array}{rr}-1 & -2 \\ 3 & 4\end{array}\right]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.5.2
Yes $B=C$. Multiply $A B=A C$ on the left by $A^{-1}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose $A B=A C$ and $A$ is an invertible $n \times n$-matrix. Does it follow that $B=C$ ? Explain why or why not.
$\boxed{Yes $B=C$. Multiply $A B=A C$ on the left by $A^{-1}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.19
Solution is: $[x=-1, y=2, z=-1]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the system of equations $9 x-2 y+4 z=-17,13 x-3 y+6 z=-25$, and $-2 x-z=3$.
$\boxed{Solution is: $[x=-1, y=2, z=-1]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.9.3.3
No. It is not closed under addition.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the set of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ such that $x y=0$. Is this a subspace of $\mathbb{R}^{2}$ ?
$\boxed{No. It is not closed under addition.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.23
No. This would lead to $0=1$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose a system of linear equations has an augmented matrix with 2 rows and 4 columns and the last column is a pivot column. Could the system of linear equations be consistent? Explain.
$\boxed{No. This would lead to $0=1$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.10.4.7
Recall that $\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\frac{\mathbf{v}^{\bullet} \mathbf{w}}{\|\mathbf{v}\|^{2}} \mathbf{v}$. The desired matrix has $i^{\text {th }}$ column equal to $\operatorname{proj}_{\mathbf{v}}\left(\mathbf{e}_{i}\right)$. Therefore, the desired matrix is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] . $$
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $\mathbf{v}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]$ and consider the linear function $T(\mathbf{w})=\operatorname{proj}_{\mathbf{v}}(\mathbf{w})$. Find the matrix of $T$ with respect to the standard basis of $\mathbb{R}^{3}$.
$\boxed{Recall that $\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\frac{\mathbf{v}^{\bullet} \mathbf{w}}{\|\mathbf{v}\|^{2}} \mathbf{v}$. The desired matrix has $i^{\text {th }}$ column equal to $\operatorname{proj}_{\mathbf{v}}\left(\mathbf{e}_{i}\right)$. Therefore, the desired matrix is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] . }$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.10.9
Orthogonal: $[0, i, 2]^{T},[1,2, i]^{T}$. Orthonormal: $\frac{1}{\sqrt{5}}[0, i, 2]^{T}, \frac{1}{\sqrt{6}}[1,2, i]^{T}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider $\mathbb{C}^{3}$ with the complex dot product. Let $\mathbf{v}_{1}=\left[\begin{array}{c}0 \\ i \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ 1+i \\ 3 i+2\end{array}\right]$. Use the Gram-Schmidt procedure to find an orthogonal basis for $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Then find an orthonormal basis.
$\boxed{Orthogonal: $[0, i, 2]^{T},[1,2, i]^{T}$. Orthonormal: $\frac{1}{\sqrt{5}}[0, i, 2]^{T}, \frac{1}{\sqrt{6}}[1,2, i]^{T}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.11.2.6
We have $\mathbf{v}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}$ where $a_{1}=\frac{\left\langle\mathbf{u}_{1}, \mathbf{v}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle}=\frac{1}{2}$. So the first coordinate is $\frac{1}{2}$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Suppose $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis of $\mathbb{R}^{3}$. We have been told that $$ \mathbf{u}_{1}=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right], $$ but it is not known what $\mathbf{u}_{2}$ and $\mathbf{u}_{3}$ are. Find the first coordinate of the vector $$ \mathbf{v}=\left[\begin{array}{l} 1 \\ 0 \\ 2 \end{array}\right] $$ with respect to the basis $B$.
$\boxed{We have $\mathbf{v}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}$ where $a_{1}=\frac{\left\langle\mathbf{u}_{1}, \mathbf{v}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle}=\frac{1}{2}$. So the first coordinate is $\frac{1}{2}$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.5.1.2
It is the plane $2 x+3 y-z=0$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Describe the span of the vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right]$ in $\mathbb{R}^{3}$.
$\boxed{It is the plane $2 x+3 y-z=0$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.1
The solution exists but is not unique.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Consider the following augmented matrix in which $*$ denotes an arbitrary number and denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is the solution unique? $$ \left[\begin{array}{lllll|l} \mathbf{\square} & * & * & * & * & * \\ 0 & \mathbf{\square} & * & * & 0 & * \\ 0 & 0 & \mathbf{\square} & * & * & * \\ 0 & 0 & 0 & 0 & \mathbf{\square} & * \end{array}\right] $$
$\boxed{The solution exists but is not unique.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.1.4.20
Solution is: $[x=2, y=4, z=5]$.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Solve the system of equations $65 x+84 y+16 z=546,81 x+105 y+20 z=682$, and $84 x+110 y+21 z=713$.
$\boxed{Solution is: $[x=2, y=4, z=5]$.}$
college_math.Matrix_Theory_and_Linear_Algebra
exercise.4.4.10
There is no possible choice of $k$ which will make these matrices commute.
Creative Commons Attribution License (CC BY)
college_math.linear_algebra
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 1 & k\end{array}\right]$. Is it possible to choose $k$ such that $A B=B A$? If so, what should $k$ equal?
$\boxed{There is no possible choice of $k$ which will make these matrices commute.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.44
The last column must not be a pivot column. The remaining columns must each be pivot columns.
Creative Commons License (CC BY)
college_math.linear_algebra
Suppose there is a unique solution to a system of linear equations. What must be true of the pivot columns in the augmented matrix?
$\boxed{The last column must not be a pivot column. The remaining columns must each be pivot columns.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.4.12.23
$$ \begin{aligned} \vec{F}_{1} \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10+\vec{F}_{2} \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 & =\left(\vec{F}_{1}+\vec{F}_{2}\right) \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 \\ & =\left[\begin{array}{r} 6 \\ 4 \\ -4 \end{array}\right] \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 \\ & =50 \sqrt{2} \end{aligned} $$
Creative Commons License (CC BY)
college_math.linear_algebra
An object moves 10 meters in the direction of $\vec{j}+\vec{i}$. There are two forces acting on this object, $\vec{F}_{1}=\vec{i}+2 \vec{j}+2 \vec{k}$, and $\vec{F}_{2}=5 \vec{i}+2 \vec{j}-6 \vec{k}$. Find the total work done on the object by the two forces. Hint: You can take the work done by the resultant of the two forces or you can add the work done by each force. Why?
$\boxed{ \begin{aligned} \vec{F}_{1} \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10+\vec{F}_{2} \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 & =\left(\vec{F}_{1}+\vec{F}_{2}\right) \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 \\ & =\left[\begin{array}{r} 6 \\ 4 \\ -4 \end{array}\right] \bullet\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}\right] 10 \\ & =50 \sqrt{2} \end{aligned} }$
college_math.A_First_Course_in_Linear_Algebra
exercise.9.9.13
$$ \frac{1}{10}\left[\begin{array}{lll} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 9 \end{array}\right] $$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the matrix for $T(\vec{w})=\operatorname{proj}_{\vec{v}}(\vec{w})$ where $\vec{v}=\left[\begin{array}{lll}1 & 0 & 3\end{array}\right]^{T}$.
$\boxed{ \frac{1}{10}\left[\begin{array}{lll} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 9 \end{array}\right] }$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.18
Solution is: $\left[w=\frac{3}{2} y-1, x=\frac{2}{3}-\frac{1}{2} y, z=\frac{1}{3}\right]$
Creative Commons License (CC BY)
college_math.linear_algebra
Determine if the system is consistent. If so, is the solution unique? $$ \begin{gathered} x+2 y+z-w=2 \\ x-y+z+w=0 \\ 2 x+y-z=1 \\ 4 x+2 y+z=3 \end{gathered} $$
$\boxed{Solution is: $\left[w=\frac{3}{2} y-1, x=\frac{2}{3}-\frac{1}{2} y, z=\frac{1}{3}\right]}$
college_math.A_First_Course_in_Linear_Algebra
exercise.9.4.1
This is not a subspace. $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ is in it, but $20\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ is not.
Creative Commons License (CC BY)
college_math.linear_algebra
Let $M=\left\{\vec{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathbb{R}^{4}:\left|u_{1}\right| \leq 4\right\}$. Is $M$ a subspace of $\mathbb{R}^{4}$ ?
$\boxed{This is not a subspace. $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ is in it, but $20\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ is not.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.37
Solution is: $[x=-1, y=-5, z=4]$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the solution to the system of equations, $-8 x+2 y+5 z=18,-8 x+3 y+5 z=13$, and $-4 x+y+5 z=19$.
$\boxed{Solution is: $[x=-1, y=-5, z=4]}$
college_math.A_First_Course_in_Linear_Algebra
exercise.4.9.2
$\left[\begin{array}{r}3 \\ 0 \\ -3\end{array}\right] \times\left[\begin{array}{r}-4 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{r}0 \\ 18 \\ 0\end{array}\right]$. So the area is 9.
Creative Commons License (CC BY)
college_math.linear_algebra
Find the area of the triangle determined by the three points, $(1,2,3),(4,2,0)$ and $(-3,2,1)$.
$\boxed{\left[\begin{array}{r}3 \\ 0 \\ -3\end{array}\right] \times\left[\begin{array}{r}-4 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{r}0 \\ 18 \\ 0\end{array}\right]$. So the area is 9.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.5.9.13
Solution is: $$ \left[\begin{array}{c} -\frac{1}{2} s-\frac{1}{2} t \\ \frac{1}{2} s-\frac{1}{2} t \\ s \\ t \end{array}\right] $$ for $s, t \in \mathbb{R}$. A basis is $$ \left\{\left[\begin{array}{r} -1 \\ 1 \\ 2 \\ 0 \end{array}\right],\left[\begin{array}{c} -1 \\ 1 \\ 0 \\ 1 \end{array}\right]\right\} $$
Creative Commons License (CC BY)
college_math.linear_algebra
Write the solution set of the following system as a linear combination of vectors $$ \left[\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 3 & 1 & 1 & 2 \\ 3 & 3 & 0 & 3 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right] $$
$\boxed{Solution is: $$ \left[\begin{array}{c} -\frac{1}{2} s-\frac{1}{2} t \\ \frac{1}{2} s-\frac{1}{2} t \\ s \\ t \end{array}\right] $$ for $s, t \in \mathbb{R}$. A basis is $$ \left\{\left[\begin{array}{r} -1 \\ 1 \\ 2 \\ 0 \end{array}\right],\left[\begin{array}{c} -1 \\ 1 \\ 0 \\ 1 \end{array}\right]\right\} }$
college_math.A_First_Course_in_Linear_Algebra
exercise.5.2.11
Recall that $\operatorname{proj}_{\vec{u}}(\vec{v})=\frac{\vec{v} \vec{u}}{\|\vec{u}\|^{2}} \vec{u}$ and so the desired matrix has $i^{t h}$ column equal to $\operatorname{proj}_{\vec{u}}\left(\vec{e}_{i}\right)$. Therefore, the matrix desired is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] $$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the matrix for $T(\vec{w})=\operatorname{proj}_{\vec{v}}(\vec{w})$ where $\vec{v}=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{T}$.
$\boxed{Recall that $\operatorname{proj}_{\vec{u}}(\vec{v})=\frac{\vec{v} \vec{u}}{\|\vec{u}\|^{2}} \vec{u}$ and so the desired matrix has $i^{t h}$ column equal to $\operatorname{proj}_{\vec{u}}\left(\vec{e}_{i}\right)$. Therefore, the matrix desired is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] }$
college_math.A_First_Course_in_Linear_Algebra
exercise.7.1.14
Yes. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ works.
Creative Commons License (CC BY)
college_math.linear_algebra
Is it possible for a nonzero matrix to have only 0 as an eigenvalue?
$\boxed{Yes. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ works.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.5
Solution is : $\{g=60, I=90, b=200, s=50\}$
Creative Commons License (CC BY)
college_math.linear_algebra
Four times the weight of Gaston is 150 pounds more than the weight of Ichabod. Four times the weight of Ichabod is 660 pounds less than seventeen times the weight of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 290 pounds. Brunhilde would balance all three of the others. Find the weights of the four people.
$\boxed{Solution is : $\{g=60, I=90, b=200, s=50\}}$
college_math.A_First_Course_in_Linear_Algebra
exercise.9.9.11
Recall that $\operatorname{proj}_{\vec{u}}(\vec{v})=\frac{\vec{v} \bullet \vec{u}}{\|\vec{u}\|^{2}} \vec{u}$ and so the desired matrix has $i^{t h}$ column equal to $\operatorname{proj}_{\vec{u}}\left(\vec{e}_{i}\right)$. Therefore, the matrix desired is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] $$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the matrix for $T(\vec{w})=\operatorname{proj}_{\vec{v}}(\vec{w})$ where $\vec{v}=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{T}$.
$\boxed{Recall that $\operatorname{proj}_{\vec{u}}(\vec{v})=\frac{\vec{v} \bullet \vec{u}}{\|\vec{u}\|^{2}} \vec{u}$ and so the desired matrix has $i^{t h}$ column equal to $\operatorname{proj}_{\vec{u}}\left(\vec{e}_{i}\right)$. Therefore, the matrix desired is $$ \frac{1}{14}\left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{array}\right] }$
college_math.A_First_Course_in_Linear_Algebra
exercise.5.9.15
Solution is: $\left[\begin{array}{r}-\hat{t} \\ \hat{t} \\ \hat{t} \\ 0\end{array}\right]$, a basis is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$.
Creative Commons License (CC BY)
college_math.linear_algebra
Write the solution set of the following system as a linear combination of vectors $$ \left[\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right] $$
$\boxed{Solution is: $\left[\begin{array}{r}-\hat{t} \\ \hat{t} \\ \hat{t} \\ 0\end{array}\right]$, a basis is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.6.3.2
Solution is: $i \sqrt{3}+1,1-i \sqrt{3},-2$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the complex cube roots of 8.
$\boxed{Solution is: $i \sqrt{3}+1,1-i \sqrt{3},-2}$
college_math.A_First_Course_in_Linear_Algebra
exercise.4.2.3
$$ \left[\begin{array}{r} 4 \\ 4 \\ -3 \end{array}\right]=2\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right]-\left[\begin{array}{r} 2 \\ -2 \\ 1 \end{array}\right] $$
Creative Commons License (CC BY)
college_math.linear_algebra
Decide whether $\vec{v}=\left[\begin{array}{r}4 \\ 4 \\ -3\end{array}\right]$ is a linear combination of the vectors $\vec{u}_{1}=\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$ and $\vec{u}_{2}=\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]$.
$\boxed{ \left[\begin{array}{r} 4 \\ 4 \\ -3 \end{array}\right]=2\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right]-\left[\begin{array}{r} 2 \\ -2 \\ 1 \end{array}\right] }$
college_math.A_First_Course_in_Linear_Algebra
exercise.5.9.5
Solution is: $\left[\begin{array}{r}-4 \hat{t} \\ -2 \hat{t} \\ \hat{t}\end{array}\right]$. A basis is $\left[\begin{array}{r}-4 \\ -2 \\ 1\end{array}\right]$
Creative Commons License (CC BY)
college_math.linear_algebra
Write the solution set of the following system as a linear combination of vectors. $$ \left[\begin{array}{lll} 1 & -1 & 2 \\ 1 & -2 & 0 \\ 3 & -4 & 4 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] $$
$\boxed{Solution is: $\left[\begin{array}{r}-4 \hat{t} \\ -2 \hat{t} \\ \hat{t}\end{array}\right]$. A basis is $\left[\begin{array}{r}-4 \\ -2 \\ 1\end{array}\right]}$
college_math.A_First_Course_in_Linear_Algebra
exercise.7.3.1
First we write $A=P D P^{-1}$. $$ \left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]=\left[\begin{array}{rr} -1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{rr} -1 & 0 \\ 0 & 3 \end{array}\right]\left[\begin{array}{rr} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] $$ Therefore $A^{10}=P D^{10} P^{-1}$. $$ \begin{aligned} {\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]^{10} } & =\left[\begin{array}{rr} -1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{rr} -1 & 0 \\ 0 & 3^{10} \end{array}\right]\left[\begin{array}{rr} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] \\ & =\left[\begin{array}{ll} 29525 & 29524 \\ 29524 & 29525 \end{array}\right] \end{aligned} $$
Creative Commons License (CC BY)
college_math.linear_algebra
Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Diagonalize A to find $A^{10}$.
$\boxed{First we write $A=P D P^{-1}$. $$ \left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]=\left[\begin{array}{rr} -1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{rr} -1 & 0 \\ 0 & 3 \end{array}\right]\left[\begin{array}{rr} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] $$ Therefore $A^{10}=P D^{10} P^{-1}$. $$ \begin{aligned} {\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]^{10} } & =\left[\begin{array}{rr} -1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{rr} -1 & 0 \\ 0 & 3^{10} \end{array}\right]\left[\begin{array}{rr} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] \\ & =\left[\begin{array}{ll} 29525 & 29524 \\ 29524 & 29525 \end{array}\right] \end{aligned} }$
college_math.A_First_Course_in_Linear_Algebra
exercise.2.1.36
$\left[\begin{array}{ll}0 & 1 \\ 5 & 3\end{array}\right]^{-1}=\left[\begin{array}{cc}-\frac{3}{5} & \frac{1}{5} \\ 1 & 0\end{array}\right]$
Creative Commons License (CC BY)
college_math.linear_algebra
Let $$ A=\left[\begin{array}{ll} 0 & 1 \\ 5 & 3 \end{array}\right] $$ Find $A^{-1}$ if possible. If $A^{-1}$ does not exist, explain why.
$\boxed{\left[\begin{array}{ll}0 & 1 \\ 5 & 3\end{array}\right]^{-1}=\left[\begin{array}{cc}-\frac{3}{5} & \frac{1}{5} \\ 1 & 0\end{array}\right]}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.39
Solution is: $[x=1, y=5, z=3]$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the solution to the system of equations, $-9 x+15 y=66,-11 x+18 y=79,-x+y=4$, and $z=3$.
$\boxed{Solution is: $[x=1, y=5, z=3]}$
college_math.A_First_Course_in_Linear_Algebra
exercise.3.2.9
$$ \operatorname{det}\left[\begin{array}{ccc} e^{t} & \cosh t & \sinh t \\ e^{t} & \sinh t & \cosh t \\ e^{t} & \cosh t & \sinh t \end{array}\right]=0 $$ and so this matrix fails to have a nonzero determinant at any value of $t$.
Creative Commons License (CC BY)
college_math.linear_algebra
Consider the matrix $$ A=\left[\begin{array}{ccc} e^{t} & \cosh t & \sinh t \\ e^{t} & \sinh t & \cosh t \\ e^{t} & \cosh t & \sinh t \end{array}\right] $$ Does there exist a value of $t$ for which this matrix fails to have an inverse? Explain.
$\boxed{ \operatorname{det}\left[\begin{array}{ccc} e^{t} & \cosh t & \sinh t \\ e^{t} & \sinh t & \cosh t \\ e^{t} & \cosh t & \sinh t \end{array}\right]=0 $$ and so this matrix fails to have a nonzero determinant at any value of $t$.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.42
No. This would lead to $0=1$.
Creative Commons License (CC BY)
college_math.linear_algebra
Suppose a system of linear equations has a $2 \times 4$ augmented matrix and the last column is a pivot column. Could the system of linear equations be consistent? Explain.
$\boxed{No. This would lead to $0=1$.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.7.2.8
The eigenvalues are distinct because they are the $n^{\text {th }}$ roots of 1 . Hence if $X$ is a given vector with $$ X=\sum_{j=1}^{n} a_{j} V_{j} $$ then $$ A^{n m} X=A^{n m} \sum_{j=1}^{n} a_{j} V_{j}=\sum_{j=1}^{n} a_{j} A^{n m} V_{j}=\sum_{j=1}^{n} a_{j} V_{j}=X $$ so $A^{n m}=I$.
Creative Commons License (CC BY)
college_math.linear_algebra
Suppose the characteristic polynomial of an $n \times n$ matrix $A$ is $1-X^{n}$. Find $A^{m n}$ where $m$ is an integer.
$\boxed{The eigenvalues are distinct because they are the $n^{\text {th }}$ roots of 1 . Hence if $X$ is a given vector with $$ X=\sum_{j=1}^{n} a_{j} V_{j} $$ then $$ A^{n m} X=A^{n m} \sum_{j=1}^{n} a_{j} V_{j}=\sum_{j=1}^{n} a_{j} A^{n m} V_{j}=\sum_{j=1}^{n} a_{j} V_{j}=X $$ so $A^{n m}=I$.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.1.2.14
Any $h$ will work.
Creative Commons License (CC BY)
college_math.linear_algebra
Find $h$ such that $$ \left[\begin{array}{rr|r} 1 & 1 & 4 \\ 3 & h & 12 \end{array}\right] $$ is the augmented matrix of a consistent system.
$\boxed{Any $h$ will work.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.3.1.4
$$ \left|\begin{array}{lll} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 2 & 1 & 1 \end{array}\right|=6 $$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the following determinant by expanding along the first row and second column. $$ \left|\begin{array}{lll} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 2 & 1 & 1 \end{array}\right| $$
$\boxed{ \left|\begin{array}{lll} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 2 & 1 & 1 \end{array}\right|=6 }$
college_math.A_First_Course_in_Linear_Algebra
exercise.7.2.3
The eigenvectors and eigenvalues are: $$ \left\{\left[\begin{array}{l} -6 \\ -1 \\ -2 \end{array}\right]\right\} \leftrightarrow 6,\left\{\left[\begin{array}{c} -5 \\ -2 \\ 2 \end{array}\right]\right\} \leftrightarrow-3,\left\{\left[\begin{array}{c} -8 \\ -2 \\ 3 \end{array}\right]\right\} \leftrightarrow-2 $$ The matrix $P$ needed to diagonalize the above matrix is $$ \left[\begin{array}{rrr} -6 & -5 & -8 \\ -1 & -2 & -2 \\ 2 & 2 & 3 \end{array}\right] $$ and the diagonal matrix $D$ is $$ \left[\begin{array}{rrr} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{array}\right] $$
Creative Commons License (CC BY)
college_math.linear_algebra
Find the eigenvalues and eigenvectors of the matrix $$ \left[\begin{array}{rrr} 89 & 38 & 268 \\ 14 & 2 & 40 \\ -30 & -12 & -90 \end{array}\right] $$ One eigenvalue is -3. Diagonalize if possible.
$\boxed{The eigenvectors and eigenvalues are: $$ \left\{\left[\begin{array}{l} -6 \\ -1 \\ -2 \end{array}\right]\right\} \leftrightarrow 6,\left\{\left[\begin{array}{c} -5 \\ -2 \\ 2 \end{array}\right]\right\} \leftrightarrow-3,\left\{\left[\begin{array}{c} -8 \\ -2 \\ 3 \end{array}\right]\right\} \leftrightarrow-2 $$ The matrix $P$ needed to diagonalize the above matrix is $$ \left[\begin{array}{rrr} -6 & -5 & -8 \\ -1 & -2 & -2 \\ 2 & 2 & 3 \end{array}\right] $$ and the diagonal matrix $D$ is $$ \left[\begin{array}{rrr} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{array}\right] }$
college_math.A_First_Course_in_Linear_Algebra
exercise.3.2.10
$$ \operatorname{det}\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right]=5 e^{-t} \neq 0 $$ and so this matrix is always invertible.
Creative Commons License (CC BY)
college_math.linear_algebra
Consider the matrix $$ A=\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right] $$ Does there exist a value of $t$ for which this matrix fails to have an inverse? Explain.
$\boxed{ \operatorname{det}\left[\begin{array}{ccc} e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t \end{array}\right]=5 e^{-t} \neq 0 $$ and so this matrix is always invertible.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.3.1.9
It does not change the determinant. This was just taking the transpose.
Creative Commons License (CC BY)
college_math.linear_algebra
An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of the determinant. $$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ll} a & c \\ b & d \end{array}\right] $$
$\boxed{It does not change the determinant. This was just taking the transpose.}$
college_math.A_First_Course_in_Linear_Algebra
exercise.2.1.35
$\left[\begin{array}{rr}2 & 1 \\ -1 & 3\end{array}\right]^{-1}=\left[\begin{array}{rr}\frac{3}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right]$
Creative Commons License (CC BY)
college_math.linear_algebra
Let $$ A=\left[\begin{array}{rr} 2 & 1 \\ -1 & 3 \end{array}\right] $$ Find $A^{-1}$ if possible. If $A^{-1}$ does not exist, explain why.
$\boxed{\left[\begin{array}{rr}2 & 1 \\ -1 & 3\end{array}\right]^{-1}=\left[\begin{array}{rr}\frac{3}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right]}$