repo
stringclasses
679 values
path
stringlengths
6
122
func_name
stringlengths
2
76
original_string
stringlengths
87
70.9k
language
stringclasses
1 value
code
stringlengths
87
70.9k
code_tokens
sequencelengths
20
6.91k
docstring
stringlengths
1
21.7k
docstring_tokens
sequencelengths
1
1.6k
sha
stringclasses
679 values
url
stringlengths
92
213
partition
stringclasses
1 value
openai/baselines
baselines/deepq/deepq.py
learn
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
python
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
[ "def", "learn", "(", "env", ",", "network", ",", "seed", "=", "None", ",", "lr", "=", "5e-4", ",", "total_timesteps", "=", "100000", ",", "buffer_size", "=", "50000", ",", "exploration_fraction", "=", "0.1", ",", "exploration_final_eps", "=", "0.02", ",", "train_freq", "=", "1", ",", "batch_size", "=", "32", ",", "print_freq", "=", "100", ",", "checkpoint_freq", "=", "10000", ",", "checkpoint_path", "=", "None", ",", "learning_starts", "=", "1000", ",", "gamma", "=", "1.0", ",", "target_network_update_freq", "=", "500", ",", "prioritized_replay", "=", "False", ",", "prioritized_replay_alpha", "=", "0.6", ",", "prioritized_replay_beta0", "=", "0.4", ",", "prioritized_replay_beta_iters", "=", "None", ",", "prioritized_replay_eps", "=", "1e-6", ",", "param_noise", "=", "False", ",", "callback", "=", "None", ",", "load_path", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "# Create all the functions necessary to train the model", "sess", "=", "get_session", "(", ")", "set_global_seeds", "(", "seed", ")", "q_func", "=", "build_q_func", "(", "network", ",", "*", "*", "network_kwargs", ")", "# capture the shape outside the closure so that the env object is not serialized", "# by cloudpickle when serializing make_obs_ph", "observation_space", "=", "env", ".", "observation_space", "def", "make_obs_ph", "(", "name", ")", ":", "return", "ObservationInput", "(", "observation_space", ",", "name", "=", "name", ")", "act", ",", "train", ",", "update_target", ",", "debug", "=", "deepq", ".", "build_train", "(", "make_obs_ph", "=", "make_obs_ph", ",", "q_func", "=", "q_func", ",", "num_actions", "=", "env", ".", "action_space", ".", "n", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "learning_rate", "=", "lr", ")", ",", "gamma", "=", "gamma", ",", "grad_norm_clipping", "=", "10", ",", "param_noise", "=", "param_noise", ")", "act_params", "=", "{", "'make_obs_ph'", ":", "make_obs_ph", ",", "'q_func'", ":", "q_func", ",", "'num_actions'", ":", "env", ".", "action_space", ".", "n", ",", "}", "act", "=", "ActWrapper", "(", "act", ",", "act_params", ")", "# Create the replay buffer", "if", "prioritized_replay", ":", "replay_buffer", "=", "PrioritizedReplayBuffer", "(", "buffer_size", ",", "alpha", "=", "prioritized_replay_alpha", ")", "if", "prioritized_replay_beta_iters", "is", "None", ":", "prioritized_replay_beta_iters", "=", "total_timesteps", "beta_schedule", "=", "LinearSchedule", "(", "prioritized_replay_beta_iters", ",", "initial_p", "=", "prioritized_replay_beta0", ",", "final_p", "=", "1.0", ")", "else", ":", "replay_buffer", "=", "ReplayBuffer", "(", "buffer_size", ")", "beta_schedule", "=", "None", "# Create the schedule for exploration starting from 1.", "exploration", "=", "LinearSchedule", "(", "schedule_timesteps", "=", "int", "(", "exploration_fraction", "*", "total_timesteps", ")", ",", "initial_p", "=", "1.0", ",", "final_p", "=", "exploration_final_eps", ")", "# Initialize the parameters and copy them to the target network.", "U", ".", "initialize", "(", ")", "update_target", "(", ")", "episode_rewards", "=", "[", "0.0", "]", "saved_mean_reward", "=", "None", "obs", "=", "env", ".", "reset", "(", ")", "reset", "=", "True", "with", "tempfile", ".", "TemporaryDirectory", "(", ")", "as", "td", ":", "td", "=", "checkpoint_path", "or", "td", "model_file", "=", "os", ".", "path", ".", "join", "(", "td", ",", "\"model\"", ")", "model_saved", "=", "False", "if", "tf", ".", "train", ".", "latest_checkpoint", "(", "td", ")", "is", "not", "None", ":", "load_variables", "(", "model_file", ")", "logger", ".", "log", "(", "'Loaded model from {}'", ".", "format", "(", "model_file", ")", ")", "model_saved", "=", "True", "elif", "load_path", "is", "not", "None", ":", "load_variables", "(", "load_path", ")", "logger", ".", "log", "(", "'Loaded model from {}'", ".", "format", "(", "load_path", ")", ")", "for", "t", "in", "range", "(", "total_timesteps", ")", ":", "if", "callback", "is", "not", "None", ":", "if", "callback", "(", "locals", "(", ")", ",", "globals", "(", ")", ")", ":", "break", "# Take action and update exploration to the newest value", "kwargs", "=", "{", "}", "if", "not", "param_noise", ":", "update_eps", "=", "exploration", ".", "value", "(", "t", ")", "update_param_noise_threshold", "=", "0.", "else", ":", "update_eps", "=", "0.", "# Compute the threshold such that the KL divergence between perturbed and non-perturbed", "# policy is comparable to eps-greedy exploration with eps = exploration.value(t).", "# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017", "# for detailed explanation.", "update_param_noise_threshold", "=", "-", "np", ".", "log", "(", "1.", "-", "exploration", ".", "value", "(", "t", ")", "+", "exploration", ".", "value", "(", "t", ")", "/", "float", "(", "env", ".", "action_space", ".", "n", ")", ")", "kwargs", "[", "'reset'", "]", "=", "reset", "kwargs", "[", "'update_param_noise_threshold'", "]", "=", "update_param_noise_threshold", "kwargs", "[", "'update_param_noise_scale'", "]", "=", "True", "action", "=", "act", "(", "np", ".", "array", "(", "obs", ")", "[", "None", "]", ",", "update_eps", "=", "update_eps", ",", "*", "*", "kwargs", ")", "[", "0", "]", "env_action", "=", "action", "reset", "=", "False", "new_obs", ",", "rew", ",", "done", ",", "_", "=", "env", ".", "step", "(", "env_action", ")", "# Store transition in the replay buffer.", "replay_buffer", ".", "add", "(", "obs", ",", "action", ",", "rew", ",", "new_obs", ",", "float", "(", "done", ")", ")", "obs", "=", "new_obs", "episode_rewards", "[", "-", "1", "]", "+=", "rew", "if", "done", ":", "obs", "=", "env", ".", "reset", "(", ")", "episode_rewards", ".", "append", "(", "0.0", ")", "reset", "=", "True", "if", "t", ">", "learning_starts", "and", "t", "%", "train_freq", "==", "0", ":", "# Minimize the error in Bellman's equation on a batch sampled from replay buffer.", "if", "prioritized_replay", ":", "experience", "=", "replay_buffer", ".", "sample", "(", "batch_size", ",", "beta", "=", "beta_schedule", ".", "value", "(", "t", ")", ")", "(", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", ",", "weights", ",", "batch_idxes", ")", "=", "experience", "else", ":", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", "=", "replay_buffer", ".", "sample", "(", "batch_size", ")", "weights", ",", "batch_idxes", "=", "np", ".", "ones_like", "(", "rewards", ")", ",", "None", "td_errors", "=", "train", "(", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", ",", "weights", ")", "if", "prioritized_replay", ":", "new_priorities", "=", "np", ".", "abs", "(", "td_errors", ")", "+", "prioritized_replay_eps", "replay_buffer", ".", "update_priorities", "(", "batch_idxes", ",", "new_priorities", ")", "if", "t", ">", "learning_starts", "and", "t", "%", "target_network_update_freq", "==", "0", ":", "# Update target network periodically.", "update_target", "(", ")", "mean_100ep_reward", "=", "round", "(", "np", ".", "mean", "(", "episode_rewards", "[", "-", "101", ":", "-", "1", "]", ")", ",", "1", ")", "num_episodes", "=", "len", "(", "episode_rewards", ")", "if", "done", "and", "print_freq", "is", "not", "None", "and", "len", "(", "episode_rewards", ")", "%", "print_freq", "==", "0", ":", "logger", ".", "record_tabular", "(", "\"steps\"", ",", "t", ")", "logger", ".", "record_tabular", "(", "\"episodes\"", ",", "num_episodes", ")", "logger", ".", "record_tabular", "(", "\"mean 100 episode reward\"", ",", "mean_100ep_reward", ")", "logger", ".", "record_tabular", "(", "\"% time spent exploring\"", ",", "int", "(", "100", "*", "exploration", ".", "value", "(", "t", ")", ")", ")", "logger", ".", "dump_tabular", "(", ")", "if", "(", "checkpoint_freq", "is", "not", "None", "and", "t", ">", "learning_starts", "and", "num_episodes", ">", "100", "and", "t", "%", "checkpoint_freq", "==", "0", ")", ":", "if", "saved_mean_reward", "is", "None", "or", "mean_100ep_reward", ">", "saved_mean_reward", ":", "if", "print_freq", "is", "not", "None", ":", "logger", ".", "log", "(", "\"Saving model due to mean reward increase: {} -> {}\"", ".", "format", "(", "saved_mean_reward", ",", "mean_100ep_reward", ")", ")", "save_variables", "(", "model_file", ")", "model_saved", "=", "True", "saved_mean_reward", "=", "mean_100ep_reward", "if", "model_saved", ":", "if", "print_freq", "is", "not", "None", ":", "logger", ".", "log", "(", "\"Restored model with mean reward: {}\"", ".", "format", "(", "saved_mean_reward", ")", ")", "load_variables", "(", "model_file", ")", "return", "act" ]
Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function.
[ "Train", "a", "deepq", "model", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/deepq.py#L95-L333
valid
openai/baselines
baselines/deepq/deepq.py
ActWrapper.save_act
def save_act(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
python
def save_act(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
[ "def", "save_act", "(", "self", ",", "path", "=", "None", ")", ":", "if", "path", "is", "None", ":", "path", "=", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "\"model.pkl\"", ")", "with", "tempfile", ".", "TemporaryDirectory", "(", ")", "as", "td", ":", "save_variables", "(", "os", ".", "path", ".", "join", "(", "td", ",", "\"model\"", ")", ")", "arc_name", "=", "os", ".", "path", ".", "join", "(", "td", ",", "\"packed.zip\"", ")", "with", "zipfile", ".", "ZipFile", "(", "arc_name", ",", "'w'", ")", "as", "zipf", ":", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "td", ")", ":", "for", "fname", "in", "files", ":", "file_path", "=", "os", ".", "path", ".", "join", "(", "root", ",", "fname", ")", "if", "file_path", "!=", "arc_name", ":", "zipf", ".", "write", "(", "file_path", ",", "os", ".", "path", ".", "relpath", "(", "file_path", ",", "td", ")", ")", "with", "open", "(", "arc_name", ",", "\"rb\"", ")", "as", "f", ":", "model_data", "=", "f", ".", "read", "(", ")", "with", "open", "(", "path", ",", "\"wb\"", ")", "as", "f", ":", "cloudpickle", ".", "dump", "(", "(", "model_data", ",", "self", ".", "_act_params", ")", ",", "f", ")" ]
Save model to a pickle located at `path`
[ "Save", "model", "to", "a", "pickle", "located", "at", "path" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/deepq.py#L55-L72
valid
openai/baselines
baselines/common/models.py
nature_cnn
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
python
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
[ "def", "nature_cnn", "(", "unscaled_images", ",", "*", "*", "conv_kwargs", ")", ":", "scaled_images", "=", "tf", ".", "cast", "(", "unscaled_images", ",", "tf", ".", "float32", ")", "/", "255.", "activ", "=", "tf", ".", "nn", ".", "relu", "h", "=", "activ", "(", "conv", "(", "scaled_images", ",", "'c1'", ",", "nf", "=", "32", ",", "rf", "=", "8", ",", "stride", "=", "4", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h2", "=", "activ", "(", "conv", "(", "h", ",", "'c2'", ",", "nf", "=", "64", ",", "rf", "=", "4", ",", "stride", "=", "2", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h3", "=", "activ", "(", "conv", "(", "h2", ",", "'c3'", ",", "nf", "=", "64", ",", "rf", "=", "3", ",", "stride", "=", "1", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h3", "=", "conv_to_fc", "(", "h3", ")", "return", "activ", "(", "fc", "(", "h3", ",", "'fc1'", ",", "nh", "=", "512", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ")", ")" ]
CNN from Nature paper.
[ "CNN", "from", "Nature", "paper", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L16-L27
valid
openai/baselines
baselines/common/models.py
mlp
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn
python
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn
[ "def", "mlp", "(", "num_layers", "=", "2", ",", "num_hidden", "=", "64", ",", "activation", "=", "tf", ".", "tanh", ",", "layer_norm", "=", "False", ")", ":", "def", "network_fn", "(", "X", ")", ":", "h", "=", "tf", ".", "layers", ".", "flatten", "(", "X", ")", "for", "i", "in", "range", "(", "num_layers", ")", ":", "h", "=", "fc", "(", "h", ",", "'mlp_fc{}'", ".", "format", "(", "i", ")", ",", "nh", "=", "num_hidden", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ")", "if", "layer_norm", ":", "h", "=", "tf", ".", "contrib", ".", "layers", ".", "layer_norm", "(", "h", ",", "center", "=", "True", ",", "scale", "=", "True", ")", "h", "=", "activation", "(", "h", ")", "return", "h", "return", "network_fn" ]
Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder
[ "Stack", "of", "fully", "-", "connected", "layers", "to", "be", "used", "in", "a", "policy", "/", "q", "-", "function", "approximator" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L31-L59
valid
openai/baselines
baselines/common/models.py
lstm
def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn
python
def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn
[ "def", "lstm", "(", "nlstm", "=", "128", ",", "layer_norm", "=", "False", ")", ":", "def", "network_fn", "(", "X", ",", "nenv", "=", "1", ")", ":", "nbatch", "=", "X", ".", "shape", "[", "0", "]", "nsteps", "=", "nbatch", "//", "nenv", "h", "=", "tf", ".", "layers", ".", "flatten", "(", "X", ")", "M", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "nbatch", "]", ")", "#mask (done t-1)", "S", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "nenv", ",", "2", "*", "nlstm", "]", ")", "#states", "xs", "=", "batch_to_seq", "(", "h", ",", "nenv", ",", "nsteps", ")", "ms", "=", "batch_to_seq", "(", "M", ",", "nenv", ",", "nsteps", ")", "if", "layer_norm", ":", "h5", ",", "snew", "=", "utils", ".", "lnlstm", "(", "xs", ",", "ms", ",", "S", ",", "scope", "=", "'lnlstm'", ",", "nh", "=", "nlstm", ")", "else", ":", "h5", ",", "snew", "=", "utils", ".", "lstm", "(", "xs", ",", "ms", ",", "S", ",", "scope", "=", "'lstm'", ",", "nh", "=", "nlstm", ")", "h", "=", "seq_to_batch", "(", "h5", ")", "initial_state", "=", "np", ".", "zeros", "(", "S", ".", "shape", ".", "as_list", "(", ")", ",", "dtype", "=", "float", ")", "return", "h", ",", "{", "'S'", ":", "S", ",", "'M'", ":", "M", ",", "'state'", ":", "snew", ",", "'initial_state'", ":", "initial_state", "}", "return", "network_fn" ]
Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder
[ "Builds", "LSTM", "(", "Long", "-", "Short", "Term", "Memory", ")", "network", "to", "be", "used", "in", "a", "policy", ".", "Note", "that", "the", "resulting", "function", "returns", "not", "only", "the", "output", "of", "the", "LSTM", "(", "i", ".", "e", ".", "hidden", "state", "of", "lstm", "for", "each", "step", "in", "the", "sequence", ")", "but", "also", "a", "dictionary", "with", "auxiliary", "tensors", "to", "be", "set", "as", "policy", "attributes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L84-L135
valid
openai/baselines
baselines/common/models.py
conv_only
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn
python
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn
[ "def", "conv_only", "(", "convs", "=", "[", "(", "32", ",", "8", ",", "4", ")", ",", "(", "64", ",", "4", ",", "2", ")", ",", "(", "64", ",", "3", ",", "1", ")", "]", ",", "*", "*", "conv_kwargs", ")", ":", "def", "network_fn", "(", "X", ")", ":", "out", "=", "tf", ".", "cast", "(", "X", ",", "tf", ".", "float32", ")", "/", "255.", "with", "tf", ".", "variable_scope", "(", "\"convnet\"", ")", ":", "for", "num_outputs", ",", "kernel_size", ",", "stride", "in", "convs", ":", "out", "=", "layers", ".", "convolution2d", "(", "out", ",", "num_outputs", "=", "num_outputs", ",", "kernel_size", "=", "kernel_size", ",", "stride", "=", "stride", ",", "activation_fn", "=", "tf", ".", "nn", ".", "relu", ",", "*", "*", "conv_kwargs", ")", "return", "out", "return", "network_fn" ]
convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer
[ "convolutions", "-", "only", "net" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L171-L198
valid
openai/baselines
baselines/common/models.py
get_network_builder
def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
python
def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
[ "def", "get_network_builder", "(", "name", ")", ":", "if", "callable", "(", "name", ")", ":", "return", "name", "elif", "name", "in", "mapping", ":", "return", "mapping", "[", "name", "]", "else", ":", "raise", "ValueError", "(", "'Unknown network type: {}'", ".", "format", "(", "name", ")", ")" ]
If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn
[ "If", "you", "want", "to", "register", "your", "own", "network", "outside", "models", ".", "py", "you", "just", "need", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L206-L224
valid
openai/baselines
baselines/deepq/models.py
mlp
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
python
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
[ "def", "mlp", "(", "hiddens", "=", "[", "]", ",", "layer_norm", "=", "False", ")", ":", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "_mlp", "(", "hiddens", ",", "layer_norm", "=", "layer_norm", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm.
[ "This", "model", "takes", "as", "input", "an", "observation", "and", "returns", "values", "of", "all", "actions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/models.py#L17-L33
valid
openai/baselines
baselines/deepq/models.py
cnn_to_mlp
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
python
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
[ "def", "cnn_to_mlp", "(", "convs", ",", "hiddens", ",", "dueling", "=", "False", ",", "layer_norm", "=", "False", ")", ":", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "_cnn_to_mlp", "(", "convs", ",", "hiddens", ",", "dueling", ",", "layer_norm", "=", "layer_norm", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm.
[ "This", "model", "takes", "as", "input", "an", "observation", "and", "returns", "values", "of", "all", "actions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/models.py#L73-L96
valid
openai/baselines
baselines/common/cmd_util.py
make_vec_env
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, flatten_dict_observations=True, gamestate=None): """ Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo. """ wrapper_kwargs = wrapper_kwargs or {} mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 seed = seed + 10000 * mpi_rank if seed is not None else None logger_dir = logger.get_dir() def make_thunk(rank): return lambda: make_env( env_id=env_id, env_type=env_type, mpi_rank=mpi_rank, subrank=rank, seed=seed, reward_scale=reward_scale, gamestate=gamestate, flatten_dict_observations=flatten_dict_observations, wrapper_kwargs=wrapper_kwargs, logger_dir=logger_dir ) set_global_seeds(seed) if num_env > 1: return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)]) else: return DummyVecEnv([make_thunk(start_index)])
python
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, flatten_dict_observations=True, gamestate=None): """ Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo. """ wrapper_kwargs = wrapper_kwargs or {} mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 seed = seed + 10000 * mpi_rank if seed is not None else None logger_dir = logger.get_dir() def make_thunk(rank): return lambda: make_env( env_id=env_id, env_type=env_type, mpi_rank=mpi_rank, subrank=rank, seed=seed, reward_scale=reward_scale, gamestate=gamestate, flatten_dict_observations=flatten_dict_observations, wrapper_kwargs=wrapper_kwargs, logger_dir=logger_dir ) set_global_seeds(seed) if num_env > 1: return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)]) else: return DummyVecEnv([make_thunk(start_index)])
[ "def", "make_vec_env", "(", "env_id", ",", "env_type", ",", "num_env", ",", "seed", ",", "wrapper_kwargs", "=", "None", ",", "start_index", "=", "0", ",", "reward_scale", "=", "1.0", ",", "flatten_dict_observations", "=", "True", ",", "gamestate", "=", "None", ")", ":", "wrapper_kwargs", "=", "wrapper_kwargs", "or", "{", "}", "mpi_rank", "=", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "if", "MPI", "else", "0", "seed", "=", "seed", "+", "10000", "*", "mpi_rank", "if", "seed", "is", "not", "None", "else", "None", "logger_dir", "=", "logger", ".", "get_dir", "(", ")", "def", "make_thunk", "(", "rank", ")", ":", "return", "lambda", ":", "make_env", "(", "env_id", "=", "env_id", ",", "env_type", "=", "env_type", ",", "mpi_rank", "=", "mpi_rank", ",", "subrank", "=", "rank", ",", "seed", "=", "seed", ",", "reward_scale", "=", "reward_scale", ",", "gamestate", "=", "gamestate", ",", "flatten_dict_observations", "=", "flatten_dict_observations", ",", "wrapper_kwargs", "=", "wrapper_kwargs", ",", "logger_dir", "=", "logger_dir", ")", "set_global_seeds", "(", "seed", ")", "if", "num_env", ">", "1", ":", "return", "SubprocVecEnv", "(", "[", "make_thunk", "(", "i", "+", "start_index", ")", "for", "i", "in", "range", "(", "num_env", ")", "]", ")", "else", ":", "return", "DummyVecEnv", "(", "[", "make_thunk", "(", "start_index", ")", "]", ")" ]
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
[ "Create", "a", "wrapped", "monitored", "SubprocVecEnv", "for", "Atari", "and", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L21-L52
valid
openai/baselines
baselines/common/cmd_util.py
make_mujoco_env
def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
python
def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
[ "def", "make_mujoco_env", "(", "env_id", ",", "seed", ",", "reward_scale", "=", "1.0", ")", ":", "rank", "=", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "myseed", "=", "seed", "+", "1000", "*", "rank", "if", "seed", "is", "not", "None", "else", "None", "set_global_seeds", "(", "myseed", ")", "env", "=", "gym", ".", "make", "(", "env_id", ")", "logger_path", "=", "None", "if", "logger", ".", "get_dir", "(", ")", "is", "None", "else", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "str", "(", "rank", ")", ")", "env", "=", "Monitor", "(", "env", ",", "logger_path", ",", "allow_early_resets", "=", "True", ")", "env", ".", "seed", "(", "seed", ")", "if", "reward_scale", "!=", "1.0", ":", "from", "baselines", ".", "common", ".", "retro_wrappers", "import", "RewardScaler", "env", "=", "RewardScaler", "(", "env", ",", "reward_scale", ")", "return", "env" ]
Create a wrapped, monitored gym.Env for MuJoCo.
[ "Create", "a", "wrapped", "monitored", "gym", ".", "Env", "for", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L88-L102
valid
openai/baselines
baselines/common/cmd_util.py
make_robotics_env
def make_robotics_env(env_id, seed, rank=0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ set_global_seeds(seed) env = gym.make(env_id) env = FlattenDictWrapper(env, ['observation', 'desired_goal']) env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)), info_keywords=('is_success',)) env.seed(seed) return env
python
def make_robotics_env(env_id, seed, rank=0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ set_global_seeds(seed) env = gym.make(env_id) env = FlattenDictWrapper(env, ['observation', 'desired_goal']) env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)), info_keywords=('is_success',)) env.seed(seed) return env
[ "def", "make_robotics_env", "(", "env_id", ",", "seed", ",", "rank", "=", "0", ")", ":", "set_global_seeds", "(", "seed", ")", "env", "=", "gym", ".", "make", "(", "env_id", ")", "env", "=", "FlattenDictWrapper", "(", "env", ",", "[", "'observation'", ",", "'desired_goal'", "]", ")", "env", "=", "Monitor", "(", "env", ",", "logger", ".", "get_dir", "(", ")", "and", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "str", "(", "rank", ")", ")", ",", "info_keywords", "=", "(", "'is_success'", ",", ")", ")", "env", ".", "seed", "(", "seed", ")", "return", "env" ]
Create a wrapped, monitored gym.Env for MuJoCo.
[ "Create", "a", "wrapped", "monitored", "gym", ".", "Env", "for", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L104-L115
valid
openai/baselines
baselines/common/cmd_util.py
common_arg_parser
def common_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str) parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2') parser.add_argument('--num_timesteps', type=float, default=1e6), parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None) parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None) parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int) parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float) parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str) parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int) parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int) parser.add_argument('--play', default=False, action='store_true') return parser
python
def common_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str) parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2') parser.add_argument('--num_timesteps', type=float, default=1e6), parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None) parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None) parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int) parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float) parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str) parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int) parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int) parser.add_argument('--play', default=False, action='store_true') return parser
[ "def", "common_arg_parser", "(", ")", ":", "parser", "=", "arg_parser", "(", ")", "parser", ".", "add_argument", "(", "'--env'", ",", "help", "=", "'environment ID'", ",", "type", "=", "str", ",", "default", "=", "'Reacher-v2'", ")", "parser", ".", "add_argument", "(", "'--env_type'", ",", "help", "=", "'type of environment, used when the environment type cannot be automatically determined'", ",", "type", "=", "str", ")", "parser", ".", "add_argument", "(", "'--seed'", ",", "help", "=", "'RNG seed'", ",", "type", "=", "int", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--alg'", ",", "help", "=", "'Algorithm'", ",", "type", "=", "str", ",", "default", "=", "'ppo2'", ")", "parser", ".", "add_argument", "(", "'--num_timesteps'", ",", "type", "=", "float", ",", "default", "=", "1e6", ")", ",", "parser", ".", "add_argument", "(", "'--network'", ",", "help", "=", "'network type (mlp, cnn, lstm, cnn_lstm, conv_only)'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--gamestate'", ",", "help", "=", "'game state to load (so far only used in retro games)'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--num_env'", ",", "help", "=", "'Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco'", ",", "default", "=", "None", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--reward_scale'", ",", "help", "=", "'Reward scale factor. Default: 1.0'", ",", "default", "=", "1.0", ",", "type", "=", "float", ")", "parser", ".", "add_argument", "(", "'--save_path'", ",", "help", "=", "'Path to save trained model to'", ",", "default", "=", "None", ",", "type", "=", "str", ")", "parser", ".", "add_argument", "(", "'--save_video_interval'", ",", "help", "=", "'Save video every x steps (0 = disabled)'", ",", "default", "=", "0", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--save_video_length'", ",", "help", "=", "'Length of recorded video. Default: 200'", ",", "default", "=", "200", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--play'", ",", "default", "=", "False", ",", "action", "=", "'store_true'", ")", "return", "parser" ]
Create an argparse.ArgumentParser for run_mujoco.py.
[ "Create", "an", "argparse", ".", "ArgumentParser", "for", "run_mujoco", ".", "py", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L135-L153
valid
openai/baselines
baselines/common/cmd_util.py
robotics_arg_parser
def robotics_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0') parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) return parser
python
def robotics_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0') parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) return parser
[ "def", "robotics_arg_parser", "(", ")", ":", "parser", "=", "arg_parser", "(", ")", "parser", ".", "add_argument", "(", "'--env'", ",", "help", "=", "'environment ID'", ",", "type", "=", "str", ",", "default", "=", "'FetchReach-v0'", ")", "parser", ".", "add_argument", "(", "'--seed'", ",", "help", "=", "'RNG seed'", ",", "type", "=", "int", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--num-timesteps'", ",", "type", "=", "int", ",", "default", "=", "int", "(", "1e6", ")", ")", "return", "parser" ]
Create an argparse.ArgumentParser for run_mujoco.py.
[ "Create", "an", "argparse", ".", "ArgumentParser", "for", "run_mujoco", ".", "py", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L155-L163
valid
openai/baselines
baselines/common/cmd_util.py
parse_unknown_args
def parse_unknown_args(args): """ Parse arguments not consumed by arg parser into a dicitonary """ retval = {} preceded_by_key = False for arg in args: if arg.startswith('--'): if '=' in arg: key = arg.split('=')[0][2:] value = arg.split('=')[1] retval[key] = value else: key = arg[2:] preceded_by_key = True elif preceded_by_key: retval[key] = arg preceded_by_key = False return retval
python
def parse_unknown_args(args): """ Parse arguments not consumed by arg parser into a dicitonary """ retval = {} preceded_by_key = False for arg in args: if arg.startswith('--'): if '=' in arg: key = arg.split('=')[0][2:] value = arg.split('=')[1] retval[key] = value else: key = arg[2:] preceded_by_key = True elif preceded_by_key: retval[key] = arg preceded_by_key = False return retval
[ "def", "parse_unknown_args", "(", "args", ")", ":", "retval", "=", "{", "}", "preceded_by_key", "=", "False", "for", "arg", "in", "args", ":", "if", "arg", ".", "startswith", "(", "'--'", ")", ":", "if", "'='", "in", "arg", ":", "key", "=", "arg", ".", "split", "(", "'='", ")", "[", "0", "]", "[", "2", ":", "]", "value", "=", "arg", ".", "split", "(", "'='", ")", "[", "1", "]", "retval", "[", "key", "]", "=", "value", "else", ":", "key", "=", "arg", "[", "2", ":", "]", "preceded_by_key", "=", "True", "elif", "preceded_by_key", ":", "retval", "[", "key", "]", "=", "arg", "preceded_by_key", "=", "False", "return", "retval" ]
Parse arguments not consumed by arg parser into a dicitonary
[ "Parse", "arguments", "not", "consumed", "by", "arg", "parser", "into", "a", "dicitonary" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L166-L185
valid
openai/baselines
baselines/common/vec_env/vec_env.py
clear_mpi_env_vars
def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
python
def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
[ "def", "clear_mpi_env_vars", "(", ")", ":", "removed_environment", "=", "{", "}", "for", "k", ",", "v", "in", "list", "(", "os", ".", "environ", ".", "items", "(", ")", ")", ":", "for", "prefix", "in", "[", "'OMPI_'", ",", "'PMI_'", "]", ":", "if", "k", ".", "startswith", "(", "prefix", ")", ":", "removed_environment", "[", "k", "]", "=", "v", "del", "os", ".", "environ", "[", "k", "]", "try", ":", "yield", "finally", ":", "os", ".", "environ", ".", "update", "(", "removed_environment", ")" ]
from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes.
[ "from", "mpi4py", "import", "MPI", "will", "call", "MPI_Init", "by", "default", ".", "If", "the", "child", "process", "has", "MPI", "environment", "variables", "MPI", "will", "think", "that", "the", "child", "process", "is", "an", "MPI", "process", "just", "like", "the", "parent", "and", "do", "bad", "things", "such", "as", "hang", ".", "This", "context", "manager", "is", "a", "hacky", "way", "to", "clear", "those", "environment", "variables", "temporarily", "such", "as", "when", "we", "are", "starting", "multiprocessing", "Processes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/vec_env.py#L204-L219
valid
openai/baselines
baselines/ppo2/ppo2.py
learn
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None, model_fn=None, **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) if model_fn is None: from baselines.ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) if eval_env is not None: eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam) epinfobuf = deque(maxlen=100) if eval_env is not None: eval_epinfobuf = deque(maxlen=100) # Start total timer tfirststart = time.perf_counter() nupdates = total_timesteps//nbatch for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 # Start timer tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632 if eval_env is not None: eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632 epinfobuf.extend(epinfos) if eval_env is not None: eval_epinfobuf.extend(eval_epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals = np.mean(mblossvals, axis=0) # End timer tnow = time.perf_counter() # Calculate the fps (frame per second) fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, returns) logger.logkv("serial_timesteps", update*nsteps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", update*nbatch) logger.logkv("fps", fps) logger.logkv("explained_variance", float(ev)) logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf])) logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf])) if eval_env is not None: logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) ) logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) ) logger.logkv('time_elapsed', tnow - tfirststart) for (lossval, lossname) in zip(lossvals, model.loss_names): logger.logkv(lossname, lossval) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: logger.dumpkvs() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0): checkdir = osp.join(logger.get_dir(), 'checkpoints') os.makedirs(checkdir, exist_ok=True) savepath = osp.join(checkdir, '%.5i'%update) print('Saving to', savepath) model.save(savepath) return model
python
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None, model_fn=None, **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) if model_fn is None: from baselines.ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) if eval_env is not None: eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam) epinfobuf = deque(maxlen=100) if eval_env is not None: eval_epinfobuf = deque(maxlen=100) # Start total timer tfirststart = time.perf_counter() nupdates = total_timesteps//nbatch for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 # Start timer tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632 if eval_env is not None: eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632 epinfobuf.extend(epinfos) if eval_env is not None: eval_epinfobuf.extend(eval_epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals = np.mean(mblossvals, axis=0) # End timer tnow = time.perf_counter() # Calculate the fps (frame per second) fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, returns) logger.logkv("serial_timesteps", update*nsteps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", update*nbatch) logger.logkv("fps", fps) logger.logkv("explained_variance", float(ev)) logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf])) logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf])) if eval_env is not None: logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) ) logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) ) logger.logkv('time_elapsed', tnow - tfirststart) for (lossval, lossname) in zip(lossvals, model.loss_names): logger.logkv(lossname, lossval) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: logger.dumpkvs() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0): checkdir = osp.join(logger.get_dir(), 'checkpoints') os.makedirs(checkdir, exist_ok=True) savepath = osp.join(checkdir, '%.5i'%update) print('Saving to', savepath) model.save(savepath) return model
[ "def", "learn", "(", "*", ",", "network", ",", "env", ",", "total_timesteps", ",", "eval_env", "=", "None", ",", "seed", "=", "None", ",", "nsteps", "=", "2048", ",", "ent_coef", "=", "0.0", ",", "lr", "=", "3e-4", ",", "vf_coef", "=", "0.5", ",", "max_grad_norm", "=", "0.5", ",", "gamma", "=", "0.99", ",", "lam", "=", "0.95", ",", "log_interval", "=", "10", ",", "nminibatches", "=", "4", ",", "noptepochs", "=", "4", ",", "cliprange", "=", "0.2", ",", "save_interval", "=", "0", ",", "load_path", "=", "None", ",", "model_fn", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "set_global_seeds", "(", "seed", ")", "if", "isinstance", "(", "lr", ",", "float", ")", ":", "lr", "=", "constfn", "(", "lr", ")", "else", ":", "assert", "callable", "(", "lr", ")", "if", "isinstance", "(", "cliprange", ",", "float", ")", ":", "cliprange", "=", "constfn", "(", "cliprange", ")", "else", ":", "assert", "callable", "(", "cliprange", ")", "total_timesteps", "=", "int", "(", "total_timesteps", ")", "policy", "=", "build_policy", "(", "env", ",", "network", ",", "*", "*", "network_kwargs", ")", "# Get the nb of env", "nenvs", "=", "env", ".", "num_envs", "# Get state_space and action_space", "ob_space", "=", "env", ".", "observation_space", "ac_space", "=", "env", ".", "action_space", "# Calculate the batch_size", "nbatch", "=", "nenvs", "*", "nsteps", "nbatch_train", "=", "nbatch", "//", "nminibatches", "# Instantiate the model object (that creates act_model and train_model)", "if", "model_fn", "is", "None", ":", "from", "baselines", ".", "ppo2", ".", "model", "import", "Model", "model_fn", "=", "Model", "model", "=", "model_fn", "(", "policy", "=", "policy", ",", "ob_space", "=", "ob_space", ",", "ac_space", "=", "ac_space", ",", "nbatch_act", "=", "nenvs", ",", "nbatch_train", "=", "nbatch_train", ",", "nsteps", "=", "nsteps", ",", "ent_coef", "=", "ent_coef", ",", "vf_coef", "=", "vf_coef", ",", "max_grad_norm", "=", "max_grad_norm", ")", "if", "load_path", "is", "not", "None", ":", "model", ".", "load", "(", "load_path", ")", "# Instantiate the runner object", "runner", "=", "Runner", "(", "env", "=", "env", ",", "model", "=", "model", ",", "nsteps", "=", "nsteps", ",", "gamma", "=", "gamma", ",", "lam", "=", "lam", ")", "if", "eval_env", "is", "not", "None", ":", "eval_runner", "=", "Runner", "(", "env", "=", "eval_env", ",", "model", "=", "model", ",", "nsteps", "=", "nsteps", ",", "gamma", "=", "gamma", ",", "lam", "=", "lam", ")", "epinfobuf", "=", "deque", "(", "maxlen", "=", "100", ")", "if", "eval_env", "is", "not", "None", ":", "eval_epinfobuf", "=", "deque", "(", "maxlen", "=", "100", ")", "# Start total timer", "tfirststart", "=", "time", ".", "perf_counter", "(", ")", "nupdates", "=", "total_timesteps", "//", "nbatch", "for", "update", "in", "range", "(", "1", ",", "nupdates", "+", "1", ")", ":", "assert", "nbatch", "%", "nminibatches", "==", "0", "# Start timer", "tstart", "=", "time", ".", "perf_counter", "(", ")", "frac", "=", "1.0", "-", "(", "update", "-", "1.0", ")", "/", "nupdates", "# Calculate the learning rate", "lrnow", "=", "lr", "(", "frac", ")", "# Calculate the cliprange", "cliprangenow", "=", "cliprange", "(", "frac", ")", "# Get minibatch", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ",", "states", ",", "epinfos", "=", "runner", ".", "run", "(", ")", "#pylint: disable=E0632", "if", "eval_env", "is", "not", "None", ":", "eval_obs", ",", "eval_returns", ",", "eval_masks", ",", "eval_actions", ",", "eval_values", ",", "eval_neglogpacs", ",", "eval_states", ",", "eval_epinfos", "=", "eval_runner", ".", "run", "(", ")", "#pylint: disable=E0632", "epinfobuf", ".", "extend", "(", "epinfos", ")", "if", "eval_env", "is", "not", "None", ":", "eval_epinfobuf", ".", "extend", "(", "eval_epinfos", ")", "# Here what we're going to do is for each minibatch calculate the loss and append it.", "mblossvals", "=", "[", "]", "if", "states", "is", "None", ":", "# nonrecurrent version", "# Index of each element of batch_size", "# Create the indices array", "inds", "=", "np", ".", "arange", "(", "nbatch", ")", "for", "_", "in", "range", "(", "noptepochs", ")", ":", "# Randomize the indexes", "np", ".", "random", ".", "shuffle", "(", "inds", ")", "# 0 to batch_size with batch_train_size step", "for", "start", "in", "range", "(", "0", ",", "nbatch", ",", "nbatch_train", ")", ":", "end", "=", "start", "+", "nbatch_train", "mbinds", "=", "inds", "[", "start", ":", "end", "]", "slices", "=", "(", "arr", "[", "mbinds", "]", "for", "arr", "in", "(", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ")", ")", "mblossvals", ".", "append", "(", "model", ".", "train", "(", "lrnow", ",", "cliprangenow", ",", "*", "slices", ")", ")", "else", ":", "# recurrent version", "assert", "nenvs", "%", "nminibatches", "==", "0", "envsperbatch", "=", "nenvs", "//", "nminibatches", "envinds", "=", "np", ".", "arange", "(", "nenvs", ")", "flatinds", "=", "np", ".", "arange", "(", "nenvs", "*", "nsteps", ")", ".", "reshape", "(", "nenvs", ",", "nsteps", ")", "for", "_", "in", "range", "(", "noptepochs", ")", ":", "np", ".", "random", ".", "shuffle", "(", "envinds", ")", "for", "start", "in", "range", "(", "0", ",", "nenvs", ",", "envsperbatch", ")", ":", "end", "=", "start", "+", "envsperbatch", "mbenvinds", "=", "envinds", "[", "start", ":", "end", "]", "mbflatinds", "=", "flatinds", "[", "mbenvinds", "]", ".", "ravel", "(", ")", "slices", "=", "(", "arr", "[", "mbflatinds", "]", "for", "arr", "in", "(", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ")", ")", "mbstates", "=", "states", "[", "mbenvinds", "]", "mblossvals", ".", "append", "(", "model", ".", "train", "(", "lrnow", ",", "cliprangenow", ",", "*", "slices", ",", "mbstates", ")", ")", "# Feedforward --> get losses --> update", "lossvals", "=", "np", ".", "mean", "(", "mblossvals", ",", "axis", "=", "0", ")", "# End timer", "tnow", "=", "time", ".", "perf_counter", "(", ")", "# Calculate the fps (frame per second)", "fps", "=", "int", "(", "nbatch", "/", "(", "tnow", "-", "tstart", ")", ")", "if", "update", "%", "log_interval", "==", "0", "or", "update", "==", "1", ":", "# Calculates if value function is a good predicator of the returns (ev > 1)", "# or if it's just worse than predicting nothing (ev =< 0)", "ev", "=", "explained_variance", "(", "values", ",", "returns", ")", "logger", ".", "logkv", "(", "\"serial_timesteps\"", ",", "update", "*", "nsteps", ")", "logger", ".", "logkv", "(", "\"nupdates\"", ",", "update", ")", "logger", ".", "logkv", "(", "\"total_timesteps\"", ",", "update", "*", "nbatch", ")", "logger", ".", "logkv", "(", "\"fps\"", ",", "fps", ")", "logger", ".", "logkv", "(", "\"explained_variance\"", ",", "float", "(", "ev", ")", ")", "logger", ".", "logkv", "(", "'eprewmean'", ",", "safemean", "(", "[", "epinfo", "[", "'r'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'eplenmean'", ",", "safemean", "(", "[", "epinfo", "[", "'l'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "if", "eval_env", "is", "not", "None", ":", "logger", ".", "logkv", "(", "'eval_eprewmean'", ",", "safemean", "(", "[", "epinfo", "[", "'r'", "]", "for", "epinfo", "in", "eval_epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'eval_eplenmean'", ",", "safemean", "(", "[", "epinfo", "[", "'l'", "]", "for", "epinfo", "in", "eval_epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'time_elapsed'", ",", "tnow", "-", "tfirststart", ")", "for", "(", "lossval", ",", "lossname", ")", "in", "zip", "(", "lossvals", ",", "model", ".", "loss_names", ")", ":", "logger", ".", "logkv", "(", "lossname", ",", "lossval", ")", "if", "MPI", "is", "None", "or", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "==", "0", ":", "logger", ".", "dumpkvs", "(", ")", "if", "save_interval", "and", "(", "update", "%", "save_interval", "==", "0", "or", "update", "==", "1", ")", "and", "logger", ".", "get_dir", "(", ")", "and", "(", "MPI", "is", "None", "or", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "==", "0", ")", ":", "checkdir", "=", "osp", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "'checkpoints'", ")", "os", ".", "makedirs", "(", "checkdir", ",", "exist_ok", "=", "True", ")", "savepath", "=", "osp", ".", "join", "(", "checkdir", ",", "'%.5i'", "%", "update", ")", "print", "(", "'Saving to'", ",", "savepath", ")", "model", ".", "save", "(", "savepath", ")", "return", "model" ]
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
[ "Learn", "policy", "using", "PPO", "algorithm", "(", "https", ":", "//", "arxiv", ".", "org", "/", "abs", "/", "1707", ".", "06347", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/ppo2/ppo2.py#L21-L204
valid
openai/baselines
baselines/common/cg.py
cg
def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
python
def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
[ "def", "cg", "(", "f_Ax", ",", "b", ",", "cg_iters", "=", "10", ",", "callback", "=", "None", ",", "verbose", "=", "False", ",", "residual_tol", "=", "1e-10", ")", ":", "p", "=", "b", ".", "copy", "(", ")", "r", "=", "b", ".", "copy", "(", ")", "x", "=", "np", ".", "zeros_like", "(", "b", ")", "rdotr", "=", "r", ".", "dot", "(", "r", ")", "fmtstr", "=", "\"%10i %10.3g %10.3g\"", "titlestr", "=", "\"%10s %10s %10s\"", "if", "verbose", ":", "print", "(", "titlestr", "%", "(", "\"iter\"", ",", "\"residual norm\"", ",", "\"soln norm\"", ")", ")", "for", "i", "in", "range", "(", "cg_iters", ")", ":", "if", "callback", "is", "not", "None", ":", "callback", "(", "x", ")", "if", "verbose", ":", "print", "(", "fmtstr", "%", "(", "i", ",", "rdotr", ",", "np", ".", "linalg", ".", "norm", "(", "x", ")", ")", ")", "z", "=", "f_Ax", "(", "p", ")", "v", "=", "rdotr", "/", "p", ".", "dot", "(", "z", ")", "x", "+=", "v", "*", "p", "r", "-=", "v", "*", "z", "newrdotr", "=", "r", ".", "dot", "(", "r", ")", "mu", "=", "newrdotr", "/", "rdotr", "p", "=", "r", "+", "mu", "*", "p", "rdotr", "=", "newrdotr", "if", "rdotr", "<", "residual_tol", ":", "break", "if", "callback", "is", "not", "None", ":", "callback", "(", "x", ")", "if", "verbose", ":", "print", "(", "fmtstr", "%", "(", "i", "+", "1", ",", "rdotr", ",", "np", ".", "linalg", ".", "norm", "(", "x", ")", ")", ")", "# pylint: disable=W0631", "return", "x" ]
Demmel p 312
[ "Demmel", "p", "312" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cg.py#L2-L34
valid
openai/baselines
baselines/common/input.py
observation_placeholder
def observation_placeholder(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor ''' assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \ 'Can only deal with Discrete and Box observation spaces for now' dtype = ob_space.dtype if dtype == np.int8: dtype = np.uint8 return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name)
python
def observation_placeholder(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor ''' assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \ 'Can only deal with Discrete and Box observation spaces for now' dtype = ob_space.dtype if dtype == np.int8: dtype = np.uint8 return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name)
[ "def", "observation_placeholder", "(", "ob_space", ",", "batch_size", "=", "None", ",", "name", "=", "'Ob'", ")", ":", "assert", "isinstance", "(", "ob_space", ",", "Discrete", ")", "or", "isinstance", "(", "ob_space", ",", "Box", ")", "or", "isinstance", "(", "ob_space", ",", "MultiDiscrete", ")", ",", "'Can only deal with Discrete and Box observation spaces for now'", "dtype", "=", "ob_space", ".", "dtype", "if", "dtype", "==", "np", ".", "int8", ":", "dtype", "=", "np", ".", "uint8", "return", "tf", ".", "placeholder", "(", "shape", "=", "(", "batch_size", ",", ")", "+", "ob_space", ".", "shape", ",", "dtype", "=", "dtype", ",", "name", "=", "name", ")" ]
Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor
[ "Create", "placeholder", "to", "feed", "observations", "into", "of", "the", "size", "appropriate", "to", "the", "observation", "space" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L5-L31
valid
openai/baselines
baselines/common/input.py
observation_input
def observation_input(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type. ''' placeholder = observation_placeholder(ob_space, batch_size, name) return placeholder, encode_observation(ob_space, placeholder)
python
def observation_input(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type. ''' placeholder = observation_placeholder(ob_space, batch_size, name) return placeholder, encode_observation(ob_space, placeholder)
[ "def", "observation_input", "(", "ob_space", ",", "batch_size", "=", "None", ",", "name", "=", "'Ob'", ")", ":", "placeholder", "=", "observation_placeholder", "(", "ob_space", ",", "batch_size", ",", "name", ")", "return", "placeholder", ",", "encode_observation", "(", "ob_space", ",", "placeholder", ")" ]
Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type.
[ "Create", "placeholder", "to", "feed", "observations", "into", "of", "the", "size", "appropriate", "to", "the", "observation", "space", "and", "add", "input", "encoder", "of", "the", "appropriate", "type", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L34-L41
valid
openai/baselines
baselines/common/input.py
encode_observation
def encode_observation(ob_space, placeholder): ''' Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder ''' if isinstance(ob_space, Discrete): return tf.to_float(tf.one_hot(placeholder, ob_space.n)) elif isinstance(ob_space, Box): return tf.to_float(placeholder) elif isinstance(ob_space, MultiDiscrete): placeholder = tf.cast(placeholder, tf.int32) one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])] return tf.concat(one_hots, axis=-1) else: raise NotImplementedError
python
def encode_observation(ob_space, placeholder): ''' Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder ''' if isinstance(ob_space, Discrete): return tf.to_float(tf.one_hot(placeholder, ob_space.n)) elif isinstance(ob_space, Box): return tf.to_float(placeholder) elif isinstance(ob_space, MultiDiscrete): placeholder = tf.cast(placeholder, tf.int32) one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])] return tf.concat(one_hots, axis=-1) else: raise NotImplementedError
[ "def", "encode_observation", "(", "ob_space", ",", "placeholder", ")", ":", "if", "isinstance", "(", "ob_space", ",", "Discrete", ")", ":", "return", "tf", ".", "to_float", "(", "tf", ".", "one_hot", "(", "placeholder", ",", "ob_space", ".", "n", ")", ")", "elif", "isinstance", "(", "ob_space", ",", "Box", ")", ":", "return", "tf", ".", "to_float", "(", "placeholder", ")", "elif", "isinstance", "(", "ob_space", ",", "MultiDiscrete", ")", ":", "placeholder", "=", "tf", ".", "cast", "(", "placeholder", ",", "tf", ".", "int32", ")", "one_hots", "=", "[", "tf", ".", "to_float", "(", "tf", ".", "one_hot", "(", "placeholder", "[", "...", ",", "i", "]", ",", "ob_space", ".", "nvec", "[", "i", "]", ")", ")", "for", "i", "in", "range", "(", "placeholder", ".", "shape", "[", "-", "1", "]", ")", "]", "return", "tf", ".", "concat", "(", "one_hots", ",", "axis", "=", "-", "1", ")", "else", ":", "raise", "NotImplementedError" ]
Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder
[ "Encode", "input", "in", "the", "way", "that", "is", "appropriate", "to", "the", "observation", "space" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L43-L63
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.generate_rollouts
def generate_rollouts(self): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ self.reset_all_rollouts() # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals o[:] = self.initial_o ag[:] = self.initial_ag # generate episodes obs, achieved_goals, acts, goals, successes = [], [], [], [], [] dones = [] info_values = [np.empty((self.T - 1, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy.get_actions( o, ag, self.g, compute_Q=self.compute_Q, noise_eps=self.noise_eps if not self.exploit else 0., random_eps=self.random_eps if not self.exploit else 0., use_target_net=self.use_target_net) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) # compute new states and observations obs_dict_new, _, done, info = self.venv.step(u) o_new = obs_dict_new['observation'] ag_new = obs_dict_new['achieved_goal'] success = np.array([i.get('is_success', 0.0) for i in info]) if any(done): # here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done # trick with using vecenvs is not to add the obs from the environments that are "done", because those are already observations # after a reset break for i, info_dict in enumerate(info): for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[i][key] if np.isnan(o_new).any(): self.logger.warn('NaN caught during rollout generation. Trying again...') self.reset_all_rollouts() return self.generate_rollouts() dones.append(done) obs.append(o.copy()) achieved_goals.append(ag.copy()) successes.append(success.copy()) acts.append(u.copy()) goals.append(self.g.copy()) o[...] = o_new ag[...] = ag_new obs.append(o.copy()) achieved_goals.append(ag.copy()) episode = dict(o=obs, u=acts, g=goals, ag=achieved_goals) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size return convert_episode_to_batch_major(episode)
python
def generate_rollouts(self): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ self.reset_all_rollouts() # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals o[:] = self.initial_o ag[:] = self.initial_ag # generate episodes obs, achieved_goals, acts, goals, successes = [], [], [], [], [] dones = [] info_values = [np.empty((self.T - 1, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy.get_actions( o, ag, self.g, compute_Q=self.compute_Q, noise_eps=self.noise_eps if not self.exploit else 0., random_eps=self.random_eps if not self.exploit else 0., use_target_net=self.use_target_net) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) # compute new states and observations obs_dict_new, _, done, info = self.venv.step(u) o_new = obs_dict_new['observation'] ag_new = obs_dict_new['achieved_goal'] success = np.array([i.get('is_success', 0.0) for i in info]) if any(done): # here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done # trick with using vecenvs is not to add the obs from the environments that are "done", because those are already observations # after a reset break for i, info_dict in enumerate(info): for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[i][key] if np.isnan(o_new).any(): self.logger.warn('NaN caught during rollout generation. Trying again...') self.reset_all_rollouts() return self.generate_rollouts() dones.append(done) obs.append(o.copy()) achieved_goals.append(ag.copy()) successes.append(success.copy()) acts.append(u.copy()) goals.append(self.g.copy()) o[...] = o_new ag[...] = ag_new obs.append(o.copy()) achieved_goals.append(ag.copy()) episode = dict(o=obs, u=acts, g=goals, ag=achieved_goals) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size return convert_episode_to_batch_major(episode)
[ "def", "generate_rollouts", "(", "self", ")", ":", "self", ".", "reset_all_rollouts", "(", ")", "# compute observations", "o", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'o'", "]", ")", ",", "np", ".", "float32", ")", "# observations", "ag", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'g'", "]", ")", ",", "np", ".", "float32", ")", "# achieved goals", "o", "[", ":", "]", "=", "self", ".", "initial_o", "ag", "[", ":", "]", "=", "self", ".", "initial_ag", "# generate episodes", "obs", ",", "achieved_goals", ",", "acts", ",", "goals", ",", "successes", "=", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", "dones", "=", "[", "]", "info_values", "=", "[", "np", ".", "empty", "(", "(", "self", ".", "T", "-", "1", ",", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'info_'", "+", "key", "]", ")", ",", "np", ".", "float32", ")", "for", "key", "in", "self", ".", "info_keys", "]", "Qs", "=", "[", "]", "for", "t", "in", "range", "(", "self", ".", "T", ")", ":", "policy_output", "=", "self", ".", "policy", ".", "get_actions", "(", "o", ",", "ag", ",", "self", ".", "g", ",", "compute_Q", "=", "self", ".", "compute_Q", ",", "noise_eps", "=", "self", ".", "noise_eps", "if", "not", "self", ".", "exploit", "else", "0.", ",", "random_eps", "=", "self", ".", "random_eps", "if", "not", "self", ".", "exploit", "else", "0.", ",", "use_target_net", "=", "self", ".", "use_target_net", ")", "if", "self", ".", "compute_Q", ":", "u", ",", "Q", "=", "policy_output", "Qs", ".", "append", "(", "Q", ")", "else", ":", "u", "=", "policy_output", "if", "u", ".", "ndim", "==", "1", ":", "# The non-batched case should still have a reasonable shape.", "u", "=", "u", ".", "reshape", "(", "1", ",", "-", "1", ")", "o_new", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'o'", "]", ")", ")", "ag_new", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'g'", "]", ")", ")", "success", "=", "np", ".", "zeros", "(", "self", ".", "rollout_batch_size", ")", "# compute new states and observations", "obs_dict_new", ",", "_", ",", "done", ",", "info", "=", "self", ".", "venv", ".", "step", "(", "u", ")", "o_new", "=", "obs_dict_new", "[", "'observation'", "]", "ag_new", "=", "obs_dict_new", "[", "'achieved_goal'", "]", "success", "=", "np", ".", "array", "(", "[", "i", ".", "get", "(", "'is_success'", ",", "0.0", ")", "for", "i", "in", "info", "]", ")", "if", "any", "(", "done", ")", ":", "# here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done", "# trick with using vecenvs is not to add the obs from the environments that are \"done\", because those are already observations", "# after a reset", "break", "for", "i", ",", "info_dict", "in", "enumerate", "(", "info", ")", ":", "for", "idx", ",", "key", "in", "enumerate", "(", "self", ".", "info_keys", ")", ":", "info_values", "[", "idx", "]", "[", "t", ",", "i", "]", "=", "info", "[", "i", "]", "[", "key", "]", "if", "np", ".", "isnan", "(", "o_new", ")", ".", "any", "(", ")", ":", "self", ".", "logger", ".", "warn", "(", "'NaN caught during rollout generation. Trying again...'", ")", "self", ".", "reset_all_rollouts", "(", ")", "return", "self", ".", "generate_rollouts", "(", ")", "dones", ".", "append", "(", "done", ")", "obs", ".", "append", "(", "o", ".", "copy", "(", ")", ")", "achieved_goals", ".", "append", "(", "ag", ".", "copy", "(", ")", ")", "successes", ".", "append", "(", "success", ".", "copy", "(", ")", ")", "acts", ".", "append", "(", "u", ".", "copy", "(", ")", ")", "goals", ".", "append", "(", "self", ".", "g", ".", "copy", "(", ")", ")", "o", "[", "...", "]", "=", "o_new", "ag", "[", "...", "]", "=", "ag_new", "obs", ".", "append", "(", "o", ".", "copy", "(", ")", ")", "achieved_goals", ".", "append", "(", "ag", ".", "copy", "(", ")", ")", "episode", "=", "dict", "(", "o", "=", "obs", ",", "u", "=", "acts", ",", "g", "=", "goals", ",", "ag", "=", "achieved_goals", ")", "for", "key", ",", "value", "in", "zip", "(", "self", ".", "info_keys", ",", "info_values", ")", ":", "episode", "[", "'info_{}'", ".", "format", "(", "key", ")", "]", "=", "value", "# stats", "successful", "=", "np", ".", "array", "(", "successes", ")", "[", "-", "1", ",", ":", "]", "assert", "successful", ".", "shape", "==", "(", "self", ".", "rollout_batch_size", ",", ")", "success_rate", "=", "np", ".", "mean", "(", "successful", ")", "self", ".", "success_history", ".", "append", "(", "success_rate", ")", "if", "self", ".", "compute_Q", ":", "self", ".", "Q_history", ".", "append", "(", "np", ".", "mean", "(", "Qs", ")", ")", "self", ".", "n_episodes", "+=", "self", ".", "rollout_batch_size", "return", "convert_episode_to_batch_major", "(", "episode", ")" ]
Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly.
[ "Performs", "rollout_batch_size", "rollouts", "in", "parallel", "for", "time", "horizon", "T", "with", "the", "current", "policy", "acting", "on", "it", "accordingly", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L51-L137
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.save_policy
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
python
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
[ "def", "save_policy", "(", "self", ",", "path", ")", ":", "with", "open", "(", "path", ",", "'wb'", ")", "as", "f", ":", "pickle", ".", "dump", "(", "self", ".", "policy", ",", "f", ")" ]
Pickles the current policy for later inspection.
[ "Pickles", "the", "current", "policy", "for", "later", "inspection", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L151-L155
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.logs
def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix != '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs
python
def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix != '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs
[ "def", "logs", "(", "self", ",", "prefix", "=", "'worker'", ")", ":", "logs", "=", "[", "]", "logs", "+=", "[", "(", "'success_rate'", ",", "np", ".", "mean", "(", "self", ".", "success_history", ")", ")", "]", "if", "self", ".", "compute_Q", ":", "logs", "+=", "[", "(", "'mean_Q'", ",", "np", ".", "mean", "(", "self", ".", "Q_history", ")", ")", "]", "logs", "+=", "[", "(", "'episode'", ",", "self", ".", "n_episodes", ")", "]", "if", "prefix", "!=", "''", "and", "not", "prefix", ".", "endswith", "(", "'/'", ")", ":", "return", "[", "(", "prefix", "+", "'/'", "+", "key", ",", "val", ")", "for", "key", ",", "val", "in", "logs", "]", "else", ":", "return", "logs" ]
Generates a dictionary that contains all collected statistics.
[ "Generates", "a", "dictionary", "that", "contains", "all", "collected", "statistics", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L157-L169
valid
openai/baselines
baselines/common/plot_util.py
smooth
def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out
python
def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out
[ "def", "smooth", "(", "y", ",", "radius", ",", "mode", "=", "'two_sided'", ",", "valid_only", "=", "False", ")", ":", "assert", "mode", "in", "(", "'two_sided'", ",", "'causal'", ")", "if", "len", "(", "y", ")", "<", "2", "*", "radius", "+", "1", ":", "return", "np", ".", "ones_like", "(", "y", ")", "*", "y", ".", "mean", "(", ")", "elif", "mode", "==", "'two_sided'", ":", "convkernel", "=", "np", ".", "ones", "(", "2", "*", "radius", "+", "1", ")", "out", "=", "np", ".", "convolve", "(", "y", ",", "convkernel", ",", "mode", "=", "'same'", ")", "/", "np", ".", "convolve", "(", "np", ".", "ones_like", "(", "y", ")", ",", "convkernel", ",", "mode", "=", "'same'", ")", "if", "valid_only", ":", "out", "[", ":", "radius", "]", "=", "out", "[", "-", "radius", ":", "]", "=", "np", ".", "nan", "elif", "mode", "==", "'causal'", ":", "convkernel", "=", "np", ".", "ones", "(", "radius", ")", "out", "=", "np", ".", "convolve", "(", "y", ",", "convkernel", ",", "mode", "=", "'full'", ")", "/", "np", ".", "convolve", "(", "np", ".", "ones_like", "(", "y", ")", ",", "convkernel", ",", "mode", "=", "'full'", ")", "out", "=", "out", "[", ":", "-", "radius", "+", "1", "]", "if", "valid_only", ":", "out", "[", ":", "radius", "]", "=", "np", ".", "nan", "return", "out" ]
Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available
[ "Smooth", "signal", "y", "where", "radius", "is", "determines", "the", "size", "of", "the", "window" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L11-L37
valid
openai/baselines
baselines/common/plot_util.py
one_sided_ema
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break if luoi >= len(xolds): break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys
python
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break if luoi >= len(xolds): break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys
[ "def", "one_sided_ema", "(", "xolds", ",", "yolds", ",", "low", "=", "None", ",", "high", "=", "None", ",", "n", "=", "512", ",", "decay_steps", "=", "1.", ",", "low_counts_threshold", "=", "1e-8", ")", ":", "low", "=", "xolds", "[", "0", "]", "if", "low", "is", "None", "else", "low", "high", "=", "xolds", "[", "-", "1", "]", "if", "high", "is", "None", "else", "high", "assert", "xolds", "[", "0", "]", "<=", "low", ",", "'low = {} < xolds[0] = {} - extrapolation not permitted!'", ".", "format", "(", "low", ",", "xolds", "[", "0", "]", ")", "assert", "xolds", "[", "-", "1", "]", ">=", "high", ",", "'high = {} > xolds[-1] = {} - extrapolation not permitted!'", ".", "format", "(", "high", ",", "xolds", "[", "-", "1", "]", ")", "assert", "len", "(", "xolds", ")", "==", "len", "(", "yolds", ")", ",", "'length of xolds ({}) and yolds ({}) do not match!'", ".", "format", "(", "len", "(", "xolds", ")", ",", "len", "(", "yolds", ")", ")", "xolds", "=", "xolds", ".", "astype", "(", "'float64'", ")", "yolds", "=", "yolds", ".", "astype", "(", "'float64'", ")", "luoi", "=", "0", "# last unused old index", "sum_y", "=", "0.", "count_y", "=", "0.", "xnews", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "n", ")", "decay_period", "=", "(", "high", "-", "low", ")", "/", "(", "n", "-", "1", ")", "*", "decay_steps", "interstep_decay", "=", "np", ".", "exp", "(", "-", "1.", "/", "decay_steps", ")", "sum_ys", "=", "np", ".", "zeros_like", "(", "xnews", ")", "count_ys", "=", "np", ".", "zeros_like", "(", "xnews", ")", "for", "i", "in", "range", "(", "n", ")", ":", "xnew", "=", "xnews", "[", "i", "]", "sum_y", "*=", "interstep_decay", "count_y", "*=", "interstep_decay", "while", "True", ":", "xold", "=", "xolds", "[", "luoi", "]", "if", "xold", "<=", "xnew", ":", "decay", "=", "np", ".", "exp", "(", "-", "(", "xnew", "-", "xold", ")", "/", "decay_period", ")", "sum_y", "+=", "decay", "*", "yolds", "[", "luoi", "]", "count_y", "+=", "decay", "luoi", "+=", "1", "else", ":", "break", "if", "luoi", ">=", "len", "(", "xolds", ")", ":", "break", "sum_ys", "[", "i", "]", "=", "sum_y", "count_ys", "[", "i", "]", "=", "count_y", "ys", "=", "sum_ys", "/", "count_ys", "ys", "[", "count_ys", "<", "low_counts_threshold", "]", "=", "np", ".", "nan", "return", "xnews", ",", "ys", ",", "count_ys" ]
perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
[ "perform", "one", "-", "sided", "(", "causal", ")", "EMA", "(", "exponential", "moving", "average", ")", "smoothing", "and", "resampling", "to", "an", "even", "grid", "with", "n", "points", ".", "Does", "not", "do", "extrapolation", "so", "we", "assume", "xolds", "[", "0", "]", "<", "=", "low", "&&", "high", "<", "=", "xolds", "[", "-", "1", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L39-L109
valid
openai/baselines
baselines/common/plot_util.py
symmetric_ema
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys
python
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys
[ "def", "symmetric_ema", "(", "xolds", ",", "yolds", ",", "low", "=", "None", ",", "high", "=", "None", ",", "n", "=", "512", ",", "decay_steps", "=", "1.", ",", "low_counts_threshold", "=", "1e-8", ")", ":", "xs", ",", "ys1", ",", "count_ys1", "=", "one_sided_ema", "(", "xolds", ",", "yolds", ",", "low", ",", "high", ",", "n", ",", "decay_steps", ",", "low_counts_threshold", "=", "0", ")", "_", ",", "ys2", ",", "count_ys2", "=", "one_sided_ema", "(", "-", "xolds", "[", ":", ":", "-", "1", "]", ",", "yolds", "[", ":", ":", "-", "1", "]", ",", "-", "high", ",", "-", "low", ",", "n", ",", "decay_steps", ",", "low_counts_threshold", "=", "0", ")", "ys2", "=", "ys2", "[", ":", ":", "-", "1", "]", "count_ys2", "=", "count_ys2", "[", ":", ":", "-", "1", "]", "count_ys", "=", "count_ys1", "+", "count_ys2", "ys", "=", "(", "ys1", "*", "count_ys1", "+", "ys2", "*", "count_ys2", ")", "/", "count_ys", "ys", "[", "count_ys", "<", "low_counts_threshold", "]", "=", "np", ".", "nan", "return", "xs", ",", "ys", ",", "count_ys" ]
perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
[ "perform", "symmetric", "EMA", "(", "exponential", "moving", "average", ")", "smoothing", "and", "resampling", "to", "an", "even", "grid", "with", "n", "points", ".", "Does", "not", "do", "extrapolation", "so", "we", "assume", "xolds", "[", "0", "]", "<", "=", "low", "&&", "high", "<", "=", "xolds", "[", "-", "1", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L111-L147
valid
openai/baselines
baselines/common/plot_util.py
load_results
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults
python
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults
[ "def", "load_results", "(", "root_dir_or_dirs", ",", "enable_progress", "=", "True", ",", "enable_monitor", "=", "True", ",", "verbose", "=", "False", ")", ":", "import", "re", "if", "isinstance", "(", "root_dir_or_dirs", ",", "str", ")", ":", "rootdirs", "=", "[", "osp", ".", "expanduser", "(", "root_dir_or_dirs", ")", "]", "else", ":", "rootdirs", "=", "[", "osp", ".", "expanduser", "(", "d", ")", "for", "d", "in", "root_dir_or_dirs", "]", "allresults", "=", "[", "]", "for", "rootdir", "in", "rootdirs", ":", "assert", "osp", ".", "exists", "(", "rootdir", ")", ",", "\"%s doesn't exist\"", "%", "rootdir", "for", "dirname", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "rootdir", ")", ":", "if", "'-proc'", "in", "dirname", ":", "files", "[", ":", "]", "=", "[", "]", "continue", "monitor_re", "=", "re", ".", "compile", "(", "r'(\\d+\\.)?(\\d+\\.)?monitor\\.csv'", ")", "if", "set", "(", "[", "'metadata.json'", ",", "'monitor.json'", ",", "'progress.json'", ",", "'progress.csv'", "]", ")", ".", "intersection", "(", "files", ")", "or", "any", "(", "[", "f", "for", "f", "in", "files", "if", "monitor_re", ".", "match", "(", "f", ")", "]", ")", ":", "# also match monitor files like 0.1.monitor.csv", "# used to be uncommented, which means do not go deeper than current directory if any of the data files", "# are found", "# dirs[:] = []", "result", "=", "{", "'dirname'", ":", "dirname", "}", "if", "\"metadata.json\"", "in", "files", ":", "with", "open", "(", "osp", ".", "join", "(", "dirname", ",", "\"metadata.json\"", ")", ",", "\"r\"", ")", "as", "fh", ":", "result", "[", "'metadata'", "]", "=", "json", ".", "load", "(", "fh", ")", "progjson", "=", "osp", ".", "join", "(", "dirname", ",", "\"progress.json\"", ")", "progcsv", "=", "osp", ".", "join", "(", "dirname", ",", "\"progress.csv\"", ")", "if", "enable_progress", ":", "if", "osp", ".", "exists", "(", "progjson", ")", ":", "result", "[", "'progress'", "]", "=", "pandas", ".", "DataFrame", "(", "read_json", "(", "progjson", ")", ")", "elif", "osp", ".", "exists", "(", "progcsv", ")", ":", "try", ":", "result", "[", "'progress'", "]", "=", "read_csv", "(", "progcsv", ")", "except", "pandas", ".", "errors", ".", "EmptyDataError", ":", "print", "(", "'skipping progress file in '", ",", "dirname", ",", "'empty data'", ")", "else", ":", "if", "verbose", ":", "print", "(", "'skipping %s: no progress file'", "%", "dirname", ")", "if", "enable_monitor", ":", "try", ":", "result", "[", "'monitor'", "]", "=", "pandas", ".", "DataFrame", "(", "monitor", ".", "load_results", "(", "dirname", ")", ")", "except", "monitor", ".", "LoadMonitorResultsError", ":", "print", "(", "'skipping %s: no monitor files'", "%", "dirname", ")", "except", "Exception", "as", "e", ":", "print", "(", "'exception loading monitor file in %s: %s'", "%", "(", "dirname", ",", "e", ")", ")", "if", "result", ".", "get", "(", "'monitor'", ")", "is", "not", "None", "or", "result", ".", "get", "(", "'progress'", ")", "is", "not", "None", ":", "allresults", ".", "append", "(", "Result", "(", "*", "*", "result", ")", ")", "if", "verbose", ":", "print", "(", "'successfully loaded %s'", "%", "dirname", ")", "if", "verbose", ":", "print", "(", "'loaded %i results'", "%", "len", "(", "allresults", ")", ")", "return", "allresults" ]
load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file
[ "load", "summaries", "of", "runs", "from", "a", "list", "of", "directories", "(", "including", "subdirectories", ")", "Arguments", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L152-L220
valid
openai/baselines
baselines/common/plot_util.py
plot_results
def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0 ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" nrows = len(sk2r) ncols = 1 figsize = figsize or (6, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) ax = axarr[isplit][0] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[isplit][0].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) return f, axarr
python
def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0 ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" nrows = len(sk2r) ncols = 1 figsize = figsize or (6, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) ax = axarr[isplit][0] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[isplit][0].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) return f, axarr
[ "def", "plot_results", "(", "allresults", ",", "*", ",", "xy_fn", "=", "default_xy_fn", ",", "split_fn", "=", "default_split_fn", ",", "group_fn", "=", "default_split_fn", ",", "average_group", "=", "False", ",", "shaded_std", "=", "True", ",", "shaded_err", "=", "True", ",", "figsize", "=", "None", ",", "legend_outside", "=", "False", ",", "resample", "=", "0", ",", "smooth_step", "=", "1.0", ")", ":", "if", "split_fn", "is", "None", ":", "split_fn", "=", "lambda", "_", ":", "''", "if", "group_fn", "is", "None", ":", "group_fn", "=", "lambda", "_", ":", "''", "sk2r", "=", "defaultdict", "(", "list", ")", "# splitkey2results", "for", "result", "in", "allresults", ":", "splitkey", "=", "split_fn", "(", "result", ")", "sk2r", "[", "splitkey", "]", ".", "append", "(", "result", ")", "assert", "len", "(", "sk2r", ")", ">", "0", "assert", "isinstance", "(", "resample", ",", "int", ")", ",", "\"0: don't resample. <integer>: that many samples\"", "nrows", "=", "len", "(", "sk2r", ")", "ncols", "=", "1", "figsize", "=", "figsize", "or", "(", "6", ",", "6", "*", "nrows", ")", "f", ",", "axarr", "=", "plt", ".", "subplots", "(", "nrows", ",", "ncols", ",", "sharex", "=", "False", ",", "squeeze", "=", "False", ",", "figsize", "=", "figsize", ")", "groups", "=", "list", "(", "set", "(", "group_fn", "(", "result", ")", "for", "result", "in", "allresults", ")", ")", "default_samples", "=", "512", "if", "average_group", ":", "resample", "=", "resample", "or", "default_samples", "for", "(", "isplit", ",", "sk", ")", "in", "enumerate", "(", "sorted", "(", "sk2r", ".", "keys", "(", ")", ")", ")", ":", "g2l", "=", "{", "}", "g2c", "=", "defaultdict", "(", "int", ")", "sresults", "=", "sk2r", "[", "sk", "]", "gresults", "=", "defaultdict", "(", "list", ")", "ax", "=", "axarr", "[", "isplit", "]", "[", "0", "]", "for", "result", "in", "sresults", ":", "group", "=", "group_fn", "(", "result", ")", "g2c", "[", "group", "]", "+=", "1", "x", ",", "y", "=", "xy_fn", "(", "result", ")", "if", "x", "is", "None", ":", "x", "=", "np", ".", "arange", "(", "len", "(", "y", ")", ")", "x", ",", "y", "=", "map", "(", "np", ".", "asarray", ",", "(", "x", ",", "y", ")", ")", "if", "average_group", ":", "gresults", "[", "group", "]", ".", "append", "(", "(", "x", ",", "y", ")", ")", "else", ":", "if", "resample", ":", "x", ",", "y", ",", "counts", "=", "symmetric_ema", "(", "x", ",", "y", ",", "x", "[", "0", "]", ",", "x", "[", "-", "1", "]", ",", "resample", ",", "decay_steps", "=", "smooth_step", ")", "l", ",", "=", "ax", ".", "plot", "(", "x", ",", "y", ",", "color", "=", "COLORS", "[", "groups", ".", "index", "(", "group", ")", "%", "len", "(", "COLORS", ")", "]", ")", "g2l", "[", "group", "]", "=", "l", "if", "average_group", ":", "for", "group", "in", "sorted", "(", "groups", ")", ":", "xys", "=", "gresults", "[", "group", "]", "if", "not", "any", "(", "xys", ")", ":", "continue", "color", "=", "COLORS", "[", "groups", ".", "index", "(", "group", ")", "%", "len", "(", "COLORS", ")", "]", "origxs", "=", "[", "xy", "[", "0", "]", "for", "xy", "in", "xys", "]", "minxlen", "=", "min", "(", "map", "(", "len", ",", "origxs", ")", ")", "def", "allequal", "(", "qs", ")", ":", "return", "all", "(", "(", "q", "==", "qs", "[", "0", "]", ")", ".", "all", "(", ")", "for", "q", "in", "qs", "[", "1", ":", "]", ")", "if", "resample", ":", "low", "=", "max", "(", "x", "[", "0", "]", "for", "x", "in", "origxs", ")", "high", "=", "min", "(", "x", "[", "-", "1", "]", "for", "x", "in", "origxs", ")", "usex", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "resample", ")", "ys", "=", "[", "]", "for", "(", "x", ",", "y", ")", "in", "xys", ":", "ys", ".", "append", "(", "symmetric_ema", "(", "x", ",", "y", ",", "low", ",", "high", ",", "resample", ",", "decay_steps", "=", "smooth_step", ")", "[", "1", "]", ")", "else", ":", "assert", "allequal", "(", "[", "x", "[", ":", "minxlen", "]", "for", "x", "in", "origxs", "]", ")", ",", "'If you want to average unevenly sampled data, set resample=<number of samples you want>'", "usex", "=", "origxs", "[", "0", "]", "ys", "=", "[", "xy", "[", "1", "]", "[", ":", "minxlen", "]", "for", "xy", "in", "xys", "]", "ymean", "=", "np", ".", "mean", "(", "ys", ",", "axis", "=", "0", ")", "ystd", "=", "np", ".", "std", "(", "ys", ",", "axis", "=", "0", ")", "ystderr", "=", "ystd", "/", "np", ".", "sqrt", "(", "len", "(", "ys", ")", ")", "l", ",", "=", "axarr", "[", "isplit", "]", "[", "0", "]", ".", "plot", "(", "usex", ",", "ymean", ",", "color", "=", "color", ")", "g2l", "[", "group", "]", "=", "l", "if", "shaded_err", ":", "ax", ".", "fill_between", "(", "usex", ",", "ymean", "-", "ystderr", ",", "ymean", "+", "ystderr", ",", "color", "=", "color", ",", "alpha", "=", ".4", ")", "if", "shaded_std", ":", "ax", ".", "fill_between", "(", "usex", ",", "ymean", "-", "ystd", ",", "ymean", "+", "ystd", ",", "color", "=", "color", ",", "alpha", "=", ".2", ")", "# https://matplotlib.org/users/legend_guide.html", "plt", ".", "tight_layout", "(", ")", "if", "any", "(", "g2l", ".", "keys", "(", ")", ")", ":", "ax", ".", "legend", "(", "g2l", ".", "values", "(", ")", ",", "[", "'%s (%i)'", "%", "(", "g", ",", "g2c", "[", "g", "]", ")", "for", "g", "in", "g2l", "]", "if", "average_group", "else", "g2l", ".", "keys", "(", ")", ",", "loc", "=", "2", "if", "legend_outside", "else", "None", ",", "bbox_to_anchor", "=", "(", "1", ",", "1", ")", "if", "legend_outside", "else", "None", ")", "ax", ".", "set_title", "(", "sk", ")", "return", "f", ",", "axarr" ]
Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions.
[ "Plot", "multiple", "Results", "objects" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L240-L375
valid
openai/baselines
baselines/common/mpi_adam_optimizer.py
check_synced
def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:])
python
def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:])
[ "def", "check_synced", "(", "localval", ",", "comm", "=", "None", ")", ":", "comm", "=", "comm", "or", "MPI", ".", "COMM_WORLD", "vals", "=", "comm", ".", "gather", "(", "localval", ")", "if", "comm", ".", "rank", "==", "0", ":", "assert", "all", "(", "val", "==", "vals", "[", "0", "]", "for", "val", "in", "vals", "[", "1", ":", "]", ")" ]
It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers)
[ "It", "s", "common", "to", "forget", "to", "initialize", "your", "variables", "to", "the", "same", "values", "or", "(", "less", "commonly", ")", "if", "you", "update", "them", "in", "some", "other", "way", "than", "adam", "to", "get", "them", "out", "of", "sync", ".", "This", "function", "checks", "that", "variables", "on", "all", "MPI", "workers", "are", "the", "same", "and", "raises", "an", "AssertionError", "otherwise" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_adam_optimizer.py#L40-L54
valid
openai/baselines
baselines/common/vec_env/util.py
copy_obs_dict
def copy_obs_dict(obs): """ Deep-copy an observation dict. """ return {k: np.copy(v) for k, v in obs.items()}
python
def copy_obs_dict(obs): """ Deep-copy an observation dict. """ return {k: np.copy(v) for k, v in obs.items()}
[ "def", "copy_obs_dict", "(", "obs", ")", ":", "return", "{", "k", ":", "np", ".", "copy", "(", "v", ")", "for", "k", ",", "v", "in", "obs", ".", "items", "(", ")", "}" ]
Deep-copy an observation dict.
[ "Deep", "-", "copy", "an", "observation", "dict", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/util.py#L11-L15
valid

No dataset card yet

Downloads last month
20