repo_name
stringlengths 7
81
| path
stringlengths 4
224
| copies
stringclasses 221
values | size
stringlengths 4
7
| content
stringlengths 975
1.04M
| license
stringclasses 15
values |
---|---|---|---|---|---|
apollos/Quantum-ESPRESSO | lapack-3.2/TESTING/EIG/dchkbd.f | 1 | 34284 | SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
$ ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
$ Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
$ IWORK, NOUT, INFO )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
$ NSIZES, NTYPES
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
$ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
$ VT( LDPT, * ), WORK( * ), X( LDX, * ),
$ Y( LDX, * ), Z( LDX, * )
* ..
*
* Purpose
* =======
*
* DCHKBD checks the singular value decomposition (SVD) routines.
*
* DGEBRD reduces a real general m by n matrix A to upper or lower
* bidiagonal form B by an orthogonal transformation: Q' * A * P = B
* (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n
* and lower bidiagonal if m < n.
*
* DORGBR generates the orthogonal matrices Q and P' from DGEBRD.
* Note that Q and P are not necessarily square.
*
* DBDSQR computes the singular value decomposition of the bidiagonal
* matrix B as B = U S V'. It is called three times to compute
* 1) B = U S1 V', where S1 is the diagonal matrix of singular
* values and the columns of the matrices U and V are the left
* and right singular vectors, respectively, of B.
* 2) Same as 1), but the singular values are stored in S2 and the
* singular vectors are not computed.
* 3) A = (UQ) S (P'V'), the SVD of the original matrix A.
* In addition, DBDSQR has an option to apply the left orthogonal matrix
* U to a matrix X, useful in least squares applications.
*
* DBDSDC computes the singular value decomposition of the bidiagonal
* matrix B as B = U S V' using divide-and-conquer. It is called twice
* to compute
* 1) B = U S1 V', where S1 is the diagonal matrix of singular
* values and the columns of the matrices U and V are the left
* and right singular vectors, respectively, of B.
* 2) Same as 1), but the singular values are stored in S2 and the
* singular vectors are not computed.
*
* For each pair of matrix dimensions (M,N) and each selected matrix
* type, an M by N matrix A and an M by NRHS matrix X are generated.
* The problem dimensions are as follows
* A: M x N
* Q: M x min(M,N) (but M x M if NRHS > 0)
* P: min(M,N) x N
* B: min(M,N) x min(M,N)
* U, V: min(M,N) x min(M,N)
* S1, S2 diagonal, order min(M,N)
* X: M x NRHS
*
* For each generated matrix, 14 tests are performed:
*
* Test DGEBRD and DORGBR
*
* (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
*
* (2) | I - Q' Q | / ( M ulp )
*
* (3) | I - PT PT' | / ( N ulp )
*
* Test DBDSQR on bidiagonal matrix B
*
* (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*
* (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
* and Z = U' Y.
* (6) | I - U' U | / ( min(M,N) ulp )
*
* (7) | I - VT VT' | / ( min(M,N) ulp )
*
* (8) S1 contains min(M,N) nonnegative values in decreasing order.
* (Return 0 if true, 1/ULP if false.)
*
* (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
* computing U and V.
*
* (10) 0 if the true singular values of B are within THRESH of
* those in S1. 2*THRESH if they are not. (Tested using
* DSVDCH)
*
* Test DBDSQR on matrix A
*
* (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )
*
* (12) | X - (QU) Z | / ( |X| max(M,k) ulp )
*
* (13) | I - (QU)'(QU) | / ( M ulp )
*
* (14) | I - (VT PT) (PT'VT') | / ( N ulp )
*
* Test DBDSDC on bidiagonal matrix B
*
* (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*
* (16) | I - U' U | / ( min(M,N) ulp )
*
* (17) | I - VT VT' | / ( min(M,N) ulp )
*
* (18) S1 contains min(M,N) nonnegative values in decreasing order.
* (Return 0 if true, 1/ULP if false.)
*
* (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
* computing U and V.
* The possible matrix types are
*
* (1) The zero matrix.
* (2) The identity matrix.
*
* (3) A diagonal matrix with evenly spaced entries
* 1, ..., ULP and random signs.
* (ULP = (first number larger than 1) - 1 )
* (4) A diagonal matrix with geometrically spaced entries
* 1, ..., ULP and random signs.
* (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
* and random signs.
*
* (6) Same as (3), but multiplied by SQRT( overflow threshold )
* (7) Same as (3), but multiplied by SQRT( underflow threshold )
*
* (8) A matrix of the form U D V, where U and V are orthogonal and
* D has evenly spaced entries 1, ..., ULP with random signs
* on the diagonal.
*
* (9) A matrix of the form U D V, where U and V are orthogonal and
* D has geometrically spaced entries 1, ..., ULP with random
* signs on the diagonal.
*
* (10) A matrix of the form U D V, where U and V are orthogonal and
* D has "clustered" entries 1, ULP,..., ULP with random
* signs on the diagonal.
*
* (11) Same as (8), but multiplied by SQRT( overflow threshold )
* (12) Same as (8), but multiplied by SQRT( underflow threshold )
*
* (13) Rectangular matrix with random entries chosen from (-1,1).
* (14) Same as (13), but multiplied by SQRT( overflow threshold )
* (15) Same as (13), but multiplied by SQRT( underflow threshold )
*
* Special case:
* (16) A bidiagonal matrix with random entries chosen from a
* logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each
* entry is e^x, where x is chosen uniformly on
* [ 2 log(ulp), -2 log(ulp) ] .) For *this* type:
* (a) DGEBRD is not called to reduce it to bidiagonal form.
* (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the
* matrix will be lower bidiagonal, otherwise upper.
* (c) only tests 5--8 and 14 are performed.
*
* A subset of the full set of matrix types may be selected through
* the logical array DOTYPE.
*
* Arguments
* ==========
*
* NSIZES (input) INTEGER
* The number of values of M and N contained in the vectors
* MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NVAL (input) INTEGER array, dimension (NM)
* The values of the matrix column dimension N.
*
* NTYPES (input) INTEGER
* The number of elements in DOTYPE. If it is zero, DCHKBD
* does nothing. It must be at least zero. If it is MAXTYP+1
* and NSIZES is 1, then an additional type, MAXTYP+1 is
* defined, which is to use whatever matrices are in A and B.
* This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
* DOTYPE(MAXTYP+1) is .TRUE. .
*
* DOTYPE (input) LOGICAL array, dimension (NTYPES)
* If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
* of type j will be generated. If NTYPES is smaller than the
* maximum number of types defined (PARAMETER MAXTYP), then
* types NTYPES+1 through MAXTYP will not be generated. If
* NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
* DOTYPE(NTYPES) will be ignored.
*
* NRHS (input) INTEGER
* The number of columns in the "right-hand side" matrices X, Y,
* and Z, used in testing DBDSQR. If NRHS = 0, then the
* operations on the right-hand side will not be tested.
* NRHS must be at least 0.
*
* ISEED (input/output) INTEGER array, dimension (4)
* On entry ISEED specifies the seed of the random number
* generator. The array elements should be between 0 and 4095;
* if not they will be reduced mod 4096. Also, ISEED(4) must
* be odd. The values of ISEED are changed on exit, and can be
* used in the next call to DCHKBD to continue the same random
* number sequence.
*
* THRESH (input) DOUBLE PRECISION
* The threshold value for the test ratios. A result is
* included in the output file if RESULT >= THRESH. To have
* every test ratio printed, use THRESH = 0. Note that the
* expected value of the test ratios is O(1), so THRESH should
* be a reasonably small multiple of 1, e.g., 10 or 100.
*
* A (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX)
* where NMAX is the maximum value of N in NVAL.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,MMAX),
* where MMAX is the maximum value of M in MVAL.
*
* BD (workspace) DOUBLE PRECISION array, dimension
* (max(min(MVAL(j),NVAL(j))))
*
* BE (workspace) DOUBLE PRECISION array, dimension
* (max(min(MVAL(j),NVAL(j))))
*
* S1 (workspace) DOUBLE PRECISION array, dimension
* (max(min(MVAL(j),NVAL(j))))
*
* S2 (workspace) DOUBLE PRECISION array, dimension
* (max(min(MVAL(j),NVAL(j))))
*
* X (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS)
*
* LDX (input) INTEGER
* The leading dimension of the arrays X, Y, and Z.
* LDX >= max(1,MMAX)
*
* Y (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS)
*
* Z (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS)
*
* Q (workspace) DOUBLE PRECISION array, dimension (LDQ,MMAX)
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,MMAX).
*
* PT (workspace) DOUBLE PRECISION array, dimension (LDPT,NMAX)
*
* LDPT (input) INTEGER
* The leading dimension of the arrays PT, U, and V.
* LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
*
* U (workspace) DOUBLE PRECISION array, dimension
* (LDPT,max(min(MVAL(j),NVAL(j))))
*
* V (workspace) DOUBLE PRECISION array, dimension
* (LDPT,max(min(MVAL(j),NVAL(j))))
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The number of entries in WORK. This must be at least
* 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all
* pairs (M,N)=(MM(j),NN(j))
*
* IWORK (workspace) INTEGER array, dimension at least 8*min(M,N)
*
* NOUT (input) INTEGER
* The FORTRAN unit number for printing out error messages
* (e.g., if a routine returns IINFO not equal to 0.)
*
* INFO (output) INTEGER
* If 0, then everything ran OK.
* -1: NSIZES < 0
* -2: Some MM(j) < 0
* -3: Some NN(j) < 0
* -4: NTYPES < 0
* -6: NRHS < 0
* -8: THRESH < 0
* -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
* -17: LDB < 1 or LDB < MMAX.
* -21: LDQ < 1 or LDQ < MMAX.
* -23: LDPT< 1 or LDPT< MNMAX.
* -27: LWORK too small.
* If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR,
* returns an error code, the
* absolute value of it is returned.
*
*-----------------------------------------------------------------------
*
* Some Local Variables and Parameters:
* ---- ----- --------- --- ----------
*
* ZERO, ONE Real 0 and 1.
* MAXTYP The number of types defined.
* NTEST The number of tests performed, or which can
* be performed so far, for the current matrix.
* MMAX Largest value in NN.
* NMAX Largest value in NN.
* MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal
* matrix.)
* MNMAX The maximum value of MNMIN for j=1,...,NSIZES.
* NFAIL The number of tests which have exceeded THRESH
* COND, IMODE Values to be passed to the matrix generators.
* ANORM Norm of A; passed to matrix generators.
*
* OVFL, UNFL Overflow and underflow thresholds.
* RTOVFL, RTUNFL Square roots of the previous 2 values.
* ULP, ULPINV Finest relative precision and its inverse.
*
* The following four arrays decode JTYPE:
* KTYPE(j) The general type (1-10) for type "j".
* KMODE(j) The MODE value to be passed to the matrix
* generator for type "j".
* KMAGN(j) The order of magnitude ( O(1),
* O(overflow^(1/2) ), O(underflow^(1/2) )
*
* ======================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 16 )
* ..
* .. Local Scalars ..
LOGICAL BADMM, BADNN, BIDIAG
CHARACTER UPLO
CHARACTER*3 PATH
INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JSIZE, JTYPE,
$ LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN, MQ,
$ MTYPES, N, NFAIL, NMAX, NTEST
DOUBLE PRECISION AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
$ TEMP1, TEMP2, ULP, ULPINV, UNFL
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
$ KMODE( MAXTYP ), KTYPE( MAXTYP )
DOUBLE PRECISION DUM( 1 ), DUMMA( 1 ), RESULT( 19 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARND
EXTERNAL DLAMCH, DLARND
* ..
* .. External Subroutines ..
EXTERNAL ALASUM, DBDSDC, DBDSQR, DBDT01, DBDT02, DBDT03,
$ DCOPY, DGEBRD, DGEMM, DLABAD, DLACPY, DLAHD2,
$ DLASET, DLATMR, DLATMS, DORGBR, DORT01, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, EXP, INT, LOG, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 /
DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADMM = .FALSE.
BADNN = .FALSE.
MMAX = 1
NMAX = 1
MNMAX = 1
MINWRK = 1
DO 10 J = 1, NSIZES
MMAX = MAX( MMAX, MVAL( J ) )
IF( MVAL( J ).LT.0 )
$ BADMM = .TRUE.
NMAX = MAX( NMAX, NVAL( J ) )
IF( NVAL( J ).LT.0 )
$ BADNN = .TRUE.
MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ),
$ MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ),
$ NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) )
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADMM ) THEN
INFO = -2
ELSE IF( BADNN ) THEN
INFO = -3
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.MMAX ) THEN
INFO = -11
ELSE IF( LDX.LT.MMAX ) THEN
INFO = -17
ELSE IF( LDQ.LT.MMAX ) THEN
INFO = -21
ELSE IF( LDPT.LT.MNMAX ) THEN
INFO = -23
ELSE IF( MINWRK.GT.LWORK ) THEN
INFO = -27
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKBD', -INFO )
RETURN
END IF
*
* Initialize constants
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'BD'
NFAIL = 0
NTEST = 0
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
ULPINV = ONE / ULP
LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
INFOT = 0
*
* Loop over sizes, types
*
DO 200 JSIZE = 1, NSIZES
M = MVAL( JSIZE )
N = NVAL( JSIZE )
MNMIN = MIN( M, N )
AMNINV = ONE / MAX( M, N, 1 )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 190 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 190
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
DO 30 J = 1, 14
RESULT( J ) = -ONE
30 CONTINUE
*
UPLO = ' '
*
* Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random symmetric, w/ eigenvalues
* =6 nonsymmetric, w/ singular values
* =7 random diagonal
* =8 random symmetric
* =9 random nonsymmetric
* =10 random bidiagonal (log. distrib.)
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*AMNINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*MAX( M, N )*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
BIDIAG = .FALSE.
IF( ITYPE.EQ.1 ) THEN
*
* Zero matrix
*
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, MNMIN
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, IMODE,
$ COND, ANORM, 0, 0, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, IMODE,
$ COND, ANORM, M, N, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Nonsymmetric, singular values specified
*
CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
$ ANORM, M, N, 'N', A, LDA, WORK( MNMIN+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Nonsymmetric, random entries
*
CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Bidiagonal, random entries
*
TEMP1 = -TWO*LOG( ULP )
DO 90 J = 1, MNMIN
BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
IF( J.LT.MNMIN )
$ BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
90 CONTINUE
*
IINFO = 0
BIDIAG = .TRUE.
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
ELSE
IINFO = 1
END IF
*
IF( IINFO.EQ.0 ) THEN
*
* Generate Right-Hand Side
*
IF( BIDIAG ) THEN
CALL DLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6,
$ ONE, ONE, 'T', 'N', WORK( MNMIN+1 ), 1,
$ ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N',
$ IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y,
$ LDX, IWORK, IINFO )
ELSE
CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( M+1 ), 1, ONE,
$ WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M,
$ NRHS, ZERO, ONE, 'NO', X, LDX, IWORK,
$ IINFO )
END IF
END IF
*
* Error Exit
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
100 CONTINUE
*
* Call DGEBRD and DORGBR to compute B, Q, and P, do tests.
*
IF( .NOT.BIDIAG ) THEN
*
* Compute transformations to reduce A to bidiagonal form:
* B := Q' * A * P.
*
CALL DLACPY( ' ', M, N, A, LDA, Q, LDQ )
CALL DGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DGEBRD.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DGEBRD', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
CALL DLACPY( ' ', M, N, Q, LDQ, PT, LDPT )
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
* Generate Q
*
MQ = M
IF( NRHS.LE.0 )
$ MQ = MNMIN
CALL DORGBR( 'Q', M, MQ, N, Q, LDQ, WORK,
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(Q)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Generate P'
*
CALL DORGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(P)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Apply Q' to an M by NRHS matrix X: Y := Q' * X.
*
CALL DGEMM( 'Transpose', 'No transpose', M, NRHS, M, ONE,
$ Q, LDQ, X, LDX, ZERO, Y, LDX )
*
* Test 1: Check the decomposition A := Q * B * PT
* 2: Check the orthogonality of Q
* 3: Check the orthogonality of PT
*
CALL DBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT,
$ WORK, RESULT( 1 ) )
CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
$ RESULT( 2 ) )
CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
$ RESULT( 3 ) )
END IF
*
* Use DBDSQR to form the SVD of the bidiagonal matrix B:
* B := U * S1 * VT, and compute Z = U' * Y.
*
CALL DCOPY( MNMIN, BD, 1, S1, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
CALL DLACPY( ' ', M, NRHS, Y, LDX, Z, LDX )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
*
CALL DBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, WORK, VT,
$ LDPT, U, LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(vects)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 4 ) = ULPINV
GO TO 170
END IF
END IF
*
* Use DBDSQR to compute only the singular values of the
* bidiagonal matrix B; U, VT, and Z should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSQR( UPLO, MNMIN, 0, 0, 0, S2, WORK, VT, LDPT, U,
$ LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(values)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 9 ) = ULPINV
GO TO 170
END IF
END IF
*
* Test 4: Check the decomposition B := U * S1 * VT
* 5: Check the computation Z := U' * Y
* 6: Check the orthogonality of U
* 7: Check the orthogonality of VT
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
$ WORK, RESULT( 4 ) )
CALL DBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK,
$ RESULT( 5 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
$ RESULT( 6 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
$ RESULT( 7 ) )
*
* Test 8: Check that the singular values are sorted in
* non-increasing order and are non-negative
*
RESULT( 8 ) = ZERO
DO 110 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 8 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
110 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
END IF
*
* Test 9: Compare DBDSQR with and without singular vectors
*
TEMP2 = ZERO
*
DO 120 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
120 CONTINUE
*
RESULT( 9 ) = TEMP2
*
* Test 10: Sturm sequence test of singular values
* Go up by factors of two until it succeeds
*
TEMP1 = THRESH*( HALF-ULP )
*
DO 130 J = 0, LOG2UI
* CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO )
IF( IINFO.EQ.0 )
$ GO TO 140
TEMP1 = TEMP1*TWO
130 CONTINUE
*
140 CONTINUE
RESULT( 10 ) = TEMP1
*
* Use DBDSQR to form the decomposition A := (QU) S (VT PT)
* from the bidiagonal form A := Q B PT.
*
IF( .NOT.BIDIAG ) THEN
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSQR( UPLO, MNMIN, N, M, NRHS, S2, WORK, PT, LDPT,
$ Q, LDQ, Y, LDX, WORK( MNMIN+1 ), IINFO )
*
* Test 11: Check the decomposition A := Q*U * S2 * VT*PT
* 12: Check the computation Z := U' * Q' * X
* 13: Check the orthogonality of Q*U
* 14: Check the orthogonality of VT*PT
*
CALL DBDT01( M, N, 0, A, LDA, Q, LDQ, S2, DUMMA, PT,
$ LDPT, WORK, RESULT( 11 ) )
CALL DBDT02( M, NRHS, X, LDX, Y, LDX, Q, LDQ, WORK,
$ RESULT( 12 ) )
CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
$ RESULT( 13 ) )
CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
$ RESULT( 14 ) )
END IF
*
* Use DBDSDC to form the SVD of the bidiagonal matrix B:
* B := U * S1 * VT
*
CALL DCOPY( MNMIN, BD, 1, S1, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
*
CALL DBDSDC( UPLO, 'I', MNMIN, S1, WORK, U, LDPT, VT, LDPT,
$ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
*
* Check error code from DBDSDC.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSDC(vects)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 15 ) = ULPINV
GO TO 170
END IF
END IF
*
* Use DBDSDC to compute only the singular values of the
* bidiagonal matrix B; U and VT should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSDC( UPLO, 'N', MNMIN, S2, WORK, DUM, 1, DUM, 1,
$ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
*
* Check error code from DBDSDC.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSDC(values)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 18 ) = ULPINV
GO TO 170
END IF
END IF
*
* Test 15: Check the decomposition B := U * S1 * VT
* 16: Check the orthogonality of U
* 17: Check the orthogonality of VT
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
$ WORK, RESULT( 15 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
$ RESULT( 16 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
$ RESULT( 17 ) )
*
* Test 18: Check that the singular values are sorted in
* non-increasing order and are non-negative
*
RESULT( 18 ) = ZERO
DO 150 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 18 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 18 ) = ULPINV
150 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 18 ) = ULPINV
END IF
*
* Test 19: Compare DBDSQR with and without singular vectors
*
TEMP2 = ZERO
*
DO 160 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
160 CONTINUE
*
RESULT( 19 ) = TEMP2
*
* End of Loop -- Check for RESULT(j) > THRESH
*
170 CONTINUE
DO 180 J = 1, 19
IF( RESULT( J ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 )
$ CALL DLAHD2( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )M, N, JTYPE, IOLDSD, J,
$ RESULT( J )
NFAIL = NFAIL + 1
END IF
180 CONTINUE
IF( .NOT.BIDIAG ) THEN
NTEST = NTEST + 19
ELSE
NTEST = NTEST + 5
END IF
*
190 CONTINUE
200 CONTINUE
*
* Summary
*
CALL ALASUM( PATH, NOUT, NFAIL, NTEST, 0 )
*
RETURN
*
* End of DCHKBD
*
9999 FORMAT( ' M=', I5, ', N=', I5, ', type ', I2, ', seed=',
$ 4( I4, ',' ), ' test(', I2, ')=', G11.4 )
9998 FORMAT( ' DCHKBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
$ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
$ I5, ')' )
*
END
| gpl-2.0 |
xianyi/OpenBLAS | lapack-netlib/TESTING/EIG/zsbmv.f | 1 | 10675 | *> \brief \b ZSBMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
* INCY )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INCX, INCY, K, LDA, N
* COMPLEX*16 ALPHA, BETA
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), X( * ), Y( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZSBMV performs the matrix-vector operation
*>
*> y := alpha*A*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are n element vectors and
*> A is an n by n symmetric band matrix, with k super-diagonals.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> UPLO - CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the band matrix A is being supplied as
*> follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> being supplied.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> being supplied.
*>
*> Unchanged on exit.
*>
*> N - INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> Unchanged on exit.
*>
*> K - INTEGER
*> On entry, K specifies the number of super-diagonals of the
*> matrix A. K must satisfy 0 .le. K.
*> Unchanged on exit.
*>
*> ALPHA - COMPLEX*16
*> On entry, ALPHA specifies the scalar alpha.
*> Unchanged on exit.
*>
*> A - COMPLEX*16 array, dimension( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*> by n part of the array A must contain the upper triangular
*> band part of the symmetric matrix, supplied column by
*> column, with the leading diagonal of the matrix in row
*> ( k + 1 ) of the array, the first super-diagonal starting at
*> position 2 in row k, and so on. The top left k by k triangle
*> of the array A is not referenced.
*> The following program segment will transfer the upper
*> triangular part of a symmetric band matrix from conventional
*> full matrix storage to band storage:
*>
*> DO 20, J = 1, N
*> M = K + 1 - J
*> DO 10, I = MAX( 1, J - K ), J
*> A( M + I, J ) = matrix( I, J )
*> 10 CONTINUE
*> 20 CONTINUE
*>
*> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*> by n part of the array A must contain the lower triangular
*> band part of the symmetric matrix, supplied column by
*> column, with the leading diagonal of the matrix in row 1 of
*> the array, the first sub-diagonal starting at position 1 in
*> row 2, and so on. The bottom right k by k triangle of the
*> array A is not referenced.
*> The following program segment will transfer the lower
*> triangular part of a symmetric band matrix from conventional
*> full matrix storage to band storage:
*>
*> DO 20, J = 1, N
*> M = 1 - J
*> DO 10, I = J, MIN( N, J + K )
*> A( M + I, J ) = matrix( I, J )
*> 10 CONTINUE
*> 20 CONTINUE
*>
*> Unchanged on exit.
*>
*> LDA - INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> ( k + 1 ).
*> Unchanged on exit.
*>
*> X - COMPLEX*16 array, dimension at least
*> ( 1 + ( N - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the
*> vector x.
*> Unchanged on exit.
*>
*> INCX - INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> Unchanged on exit.
*>
*> BETA - COMPLEX*16
*> On entry, BETA specifies the scalar beta.
*> Unchanged on exit.
*>
*> Y - COMPLEX*16 array, dimension at least
*> ( 1 + ( N - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the
*> vector y. On exit, Y is overwritten by the updated vector y.
*>
*> INCY - INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> Unchanged on exit.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCX, INCY, K, LDA, N
COMPLEX*16 ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * ), Y( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
COMPLEX*16 TEMP1, TEMP2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = 1
ELSE IF( N.LT.0 ) THEN
INFO = 2
ELSE IF( K.LT.0 ) THEN
INFO = 3
ELSE IF( LDA.LT.( K+1 ) ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 8
ELSE IF( INCY.EQ.0 ) THEN
INFO = 11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZSBMV ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 ) THEN
KX = 1
ELSE
KX = 1 - ( N-1 )*INCX
END IF
IF( INCY.GT.0 ) THEN
KY = 1
ELSE
KY = 1 - ( N-1 )*INCY
END IF
*
* Start the operations. In this version the elements of the array A
* are accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF( BETA.NE.ONE ) THEN
IF( INCY.EQ.1 ) THEN
IF( BETA.EQ.ZERO ) THEN
DO 10 I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1, N
Y( I ) = BETA*Y( I )
20 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO ) THEN
DO 30 I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1, N
Y( IY ) = BETA*Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF( ALPHA.EQ.ZERO )
$ RETURN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Form y when upper triangle of A is stored.
*
KPLUS1 = K + 1
IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
DO 60 J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
L = KPLUS1 - J
DO 50 I = MAX( 1, J-K ), J - 1
Y( I ) = Y( I ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( I )
50 CONTINUE
Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 70 I = MAX( 1, J-K ), J - 1
Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( IX )
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF( J.GT.K ) THEN
KX = KX + INCX
KY = KY + INCY
END IF
80 CONTINUE
END IF
ELSE
*
* Form y when lower triangle of A is stored.
*
IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
DO 100 J = 1, N
TEMP1 = ALPHA*X( J )
TEMP2 = ZERO
Y( J ) = Y( J ) + TEMP1*A( 1, J )
L = 1 - J
DO 90 I = J + 1, MIN( N, J+K )
Y( I ) = Y( I ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( I )
90 CONTINUE
Y( J ) = Y( J ) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1, N
TEMP1 = ALPHA*X( JX )
TEMP2 = ZERO
Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
L = 1 - J
IX = JX
IY = JY
DO 110 I = J + 1, MIN( N, J+K )
IX = IX + INCX
IY = IY + INCY
Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
TEMP2 = TEMP2 + A( L+I, J )*X( IX )
110 CONTINUE
Y( JY ) = Y( JY ) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZSBMV
*
END
| bsd-3-clause |
xianyi/OpenBLAS | lapack-netlib/TESTING/LIN/zlatsy.f | 1 | 7131 | *> \brief \b ZLATSY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDX, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( * )
* COMPLEX*16 X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLATSY generates a special test matrix for the complex symmetric
*> (indefinite) factorization. The pivot blocks of the generated matrix
*> will be in the following order:
*> 2x2 pivot block, non diagonalizable
*> 1x1 pivot block
*> 2x2 pivot block, diagonalizable
*> (cycle repeats)
*> A row interchange is required for each non-diagonalizable 2x2 block.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> Specifies whether the generated matrix is to be upper or
*> lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,N)
*> The generated matrix, consisting of 3x3 and 2x2 diagonal
*> blocks which result in the pivot sequence given above.
*> The matrix outside of these diagonal blocks is zero.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed for the random number generator. The last
*> of the four integers must be odd. (modified on exit)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDX, N
* ..
* .. Array Arguments ..
INTEGER ISEED( * )
COMPLEX*16 X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 EYE
PARAMETER ( EYE = ( 0.0D0, 1.0D0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, N5
DOUBLE PRECISION ALPHA, ALPHA3, BETA
COMPLEX*16 A, B, C, R
* ..
* .. External Functions ..
COMPLEX*16 ZLARND
EXTERNAL ZLARND
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Initialize constants
*
ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0
BETA = ALPHA - 1.D0 / 1000.D0
ALPHA3 = ALPHA*ALPHA*ALPHA
*
* UPLO = 'U': Upper triangular storage
*
IF( UPLO.EQ.'U' ) THEN
*
* Fill the upper triangle of the matrix with zeros.
*
DO 20 J = 1, N
DO 10 I = 1, J
X( I, J ) = 0.0D0
10 CONTINUE
20 CONTINUE
N5 = N / 5
N5 = N - 5*N5 + 1
*
DO 30 I = N, N5, -5
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I-2, I ) = B
X( I-2, I-1 ) = R
X( I-2, I-2 ) = C
X( I-1, I-1 ) = ZLARND( 2, ISEED )
X( I-3, I-3 ) = ZLARND( 2, ISEED )
X( I-4, I-4 ) = ZLARND( 2, ISEED )
IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
X( I-4, I-3 ) = 2.0D0*X( I-3, I-3 )
ELSE
X( I-4, I-3 ) = 2.0D0*X( I-4, I-4 )
END IF
30 CONTINUE
*
* Clean-up for N not a multiple of 5.
*
I = N5 - 1
IF( I.GT.2 ) THEN
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I-2, I ) = B
X( I-2, I-1 ) = R
X( I-2, I-2 ) = C
X( I-1, I-1 ) = ZLARND( 2, ISEED )
I = I - 3
END IF
IF( I.GT.1 ) THEN
X( I, I ) = ZLARND( 2, ISEED )
X( I-1, I-1 ) = ZLARND( 2, ISEED )
IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
X( I-1, I ) = 2.0D0*X( I, I )
ELSE
X( I-1, I ) = 2.0D0*X( I-1, I-1 )
END IF
I = I - 2
ELSE IF( I.EQ.1 ) THEN
X( I, I ) = ZLARND( 2, ISEED )
I = I - 1
END IF
*
* UPLO = 'L': Lower triangular storage
*
ELSE
*
* Fill the lower triangle of the matrix with zeros.
*
DO 50 J = 1, N
DO 40 I = J, N
X( I, J ) = 0.0D0
40 CONTINUE
50 CONTINUE
N5 = N / 5
N5 = N5*5
*
DO 60 I = 1, N5, 5
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I+2, I ) = B
X( I+2, I+1 ) = R
X( I+2, I+2 ) = C
X( I+1, I+1 ) = ZLARND( 2, ISEED )
X( I+3, I+3 ) = ZLARND( 2, ISEED )
X( I+4, I+4 ) = ZLARND( 2, ISEED )
IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
X( I+4, I+3 ) = 2.0D0*X( I+3, I+3 )
ELSE
X( I+4, I+3 ) = 2.0D0*X( I+4, I+4 )
END IF
60 CONTINUE
*
* Clean-up for N not a multiple of 5.
*
I = N5 + 1
IF( I.LT.N-1 ) THEN
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I+2, I ) = B
X( I+2, I+1 ) = R
X( I+2, I+2 ) = C
X( I+1, I+1 ) = ZLARND( 2, ISEED )
I = I + 3
END IF
IF( I.LT.N ) THEN
X( I, I ) = ZLARND( 2, ISEED )
X( I+1, I+1 ) = ZLARND( 2, ISEED )
IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
X( I+1, I ) = 2.0D0*X( I, I )
ELSE
X( I+1, I ) = 2.0D0*X( I+1, I+1 )
END IF
I = I + 2
ELSE IF( I.EQ.N ) THEN
X( I, I ) = ZLARND( 2, ISEED )
I = I + 1
END IF
END IF
*
RETURN
*
* End of ZLATSY
*
END
| bsd-3-clause |
apollos/Quantum-ESPRESSO | PHonon/PH/set_int12_nc.f90 | 5 | 2924 | !
! Copyright (C) 2007-2009 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!----------------------------------------------------------------------------
SUBROUTINE set_int12_nc(iflag)
!----------------------------------------------------------------------------
!
! This is a driver to call the routines that rotate and multiply
! by the Pauli matrices the integrals.
!
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE spin_orb, ONLY : lspinorb
USE uspp_param, only: upf
USE phus, ONLY : int1, int2, int1_nc, int2_so
IMPLICIT NONE
INTEGER :: iflag
INTEGER :: np, na
int1_nc=(0.d0,0.d0)
IF (lspinorb) int2_so=(0.d0,0.d0)
DO np = 1, ntyp
IF ( upf(np)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==np) THEN
IF (upf(np)%has_so) THEN
CALL transform_int1_so(int1,na,iflag)
CALL transform_int2_so(int2,na,iflag)
ELSE
CALL transform_int1_nc(int1,na,iflag)
IF (lspinorb) CALL transform_int2_nc(int2,na,iflag)
END IF
END IF
END DO
END IF
END DO
END SUBROUTINE set_int12_nc
!----------------------------------------------------------------------------
SUBROUTINE set_int3_nc(npe)
!----------------------------------------------------------------------------
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE uspp_param, only: upf
USE phus, ONLY : int3, int3_nc
IMPLICIT NONE
INTEGER :: npe
INTEGER :: np, na
int3_nc=(0.d0,0.d0)
DO np = 1, ntyp
IF ( upf(np)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==np) THEN
IF (upf(np)%has_so) THEN
CALL transform_int3_so(int3,na,npe)
ELSE
CALL transform_int3_nc(int3,na,npe)
END IF
END IF
END DO
END IF
END DO
END SUBROUTINE set_int3_nc
!
!----------------------------------------------------------------------------
SUBROUTINE set_dbecsum_nc(dbecsum_nc, dbecsum, npe)
!----------------------------------------------------------------------------
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE uspp_param, only: upf, nhm
USE noncollin_module, ONLY : nspin_mag
USE lsda_mod, ONLY : nspin
IMPLICIT NONE
INTEGER :: npe
INTEGER :: np, na
COMPLEX(DP), INTENT(IN) :: dbecsum_nc( nhm, nhm, nat, nspin, npe)
COMPLEX(DP), INTENT(OUT) :: dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, npe)
DO np = 1, ntyp
IF ( upf(np)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==np) THEN
IF (upf(np)%has_so) THEN
CALL transform_dbecsum_so(dbecsum_nc,dbecsum,na, npe)
ELSE
CALL transform_dbecsum_nc(dbecsum_nc,dbecsum,na, npe)
END IF
END IF
END DO
END IF
END DO
RETURN
END SUBROUTINE set_dbecsum_nc
| gpl-2.0 |
braghiere/JULESv4.6_clump | extract/jules/src/science/snow/snowpack.F90 | 4 | 23649 | ! *****************************COPYRIGHT*******************************
! (c) [University of Edinburgh] [2009]. All rights reserved.
! This routine has been licensed to the Met Office for use and
! distribution under the JULES collaboration agreement, subject
! to the terms and conditions set out therein.
! [Met Office Ref SC237]
! *****************************COPYRIGHT*******************************
! SUBROUTINE SNOWPACK-------------------------------------------------
! Description:
! Snow thermodynamics and hydrology
! Subroutine Interface:
MODULE snowpack_mod
CHARACTER(LEN=*), PARAMETER, PRIVATE :: ModuleName='SNOWPACK_MOD'
CONTAINS
SUBROUTINE snowpack ( land_pts,surft_pts,timestep,cansnowtile, &
nsnow,surft_index,csnow,ei_surft,hcaps,hcons, &
infiltration, &
ksnow,rho_snow_grnd,smcl1,snowfall,sthf1, &
surf_htf_surft,tile_frac,v_sat1,ds, &
melt_surft,sice,sliq,snomlt_sub_htf, &
snowdepth,snowmass,tsnow,tsoil1,tsurf_elev_surft, &
snow_soil_htf,rho_snow,rho0,sice0,tsnow0 )
USE tridag_mod, ONLY: tridag
USE c_0_dg_c, ONLY : &
! imported scalar parameters
tm ! Temperature at which fresh water freezes
! ! and ice melts (K)
USE c_densty, ONLY : &
! imported scalar parameters
rho_water ! density of pure water (kg/m3)
USE c_lheat , ONLY : &
! imported scalar parameters
lc &
! latent heat of condensation of water
! ! at 0degC (J kg-1)
,lf ! latent heat of fusion at 0degC (J kg-1)
USE water_constants_mod, ONLY : &
! imported scalar parameters
hcapi &
! Specific heat capacity of ice (J/kg/K)
,hcapw &
! Specific heat capacity of water (J/kg/K)
,rho_ice
! Specific density of solid ice (kg/m3)
USE ancil_info, ONLY : l_lice_point
USE jules_soil_mod, ONLY : dzsoil, dzsoil_elev
USE jules_surface_mod, ONLY : l_elev_land_ice
USE jules_snow_mod, ONLY : &
nsmax &
! Maximum possible number of snow layers
,l_snow_infilt &
! Include infiltration of rain into snow
,rho_snow_const &
! constant density of lying snow (kg per m**3)
,rho_snow_fresh &
! density of fresh snow (kg per m**3)
,snowliqcap &
! Liquid water holding capacity of lying snow
! as a fraction of snow mass.
,snow_hcon &
! Conductivity of snow
,rho_firn_pore_restrict &
! Density at which ability of snowpack to hold/percolate
! water starts to be restricted
,rho_firn_pore_closure
! Density at which snowpack pores close off entirely and
! no additional melt can be held/percolated through
USE parkind1, ONLY: jprb, jpim
USE yomhook, ONLY: lhook, dr_hook
IMPLICIT NONE
! Scalar parameters
REAL, PARAMETER :: GAMMA = 0.5
! Implicit timestep weighting
! Scalar arguments with intent(in)
INTEGER, INTENT(IN) :: &
land_pts &
! Total number of land points
,surft_pts ! Number of tile points
REAL, INTENT(IN) :: &
timestep ! Timestep (s)
LOGICAL, INTENT(IN) :: &
cansnowtile ! Switch for canopy snow model
! Array arguments with intent(in)
INTEGER, INTENT(IN) :: &
nsnow(land_pts) &
! Number of snow layers
,surft_index(land_pts)
! Index of tile points
REAL, INTENT(IN) :: &
csnow(land_pts,nsmax) &
! Areal heat capacity of layers (J/K/m2)
,ei_surft(land_pts) &
! Sublimation of snow (kg/m2/s)
,hcaps(land_pts) &
! Heat capacity of soil surface layer (J/K/m3)
,hcons(land_pts) &
! Thermal conductivity of top soil layer,
! ! including water and ice (W/m/K)
,ksnow(land_pts,nsmax) &
! Thermal conductivity of layers (W/m/K)
,rho_snow_grnd(land_pts) &
! Snowpack bulk density (kg/m3)
,smcl1(land_pts) &
! Moisture content of surface soil layer (kg/m2)
,snowfall(land_pts) &
! Snow reaching the ground (kg/m2)
,infiltration(land_pts) &
! Rainfall infiltrating into snowpack (kg/m2)
,sthf1(land_pts) &
! Frozen soil moisture content of surface layer
! ! as a fraction of saturation.
,surf_htf_surft(land_pts) &
! Snow surface heat flux (W/m2)
,tile_frac(land_pts) &
! Tile fractions
,v_sat1(land_pts)
! Surface soil layer volumetric
! ! moisture concentration at saturation
! Array arguments with intent(inout)
REAL, INTENT(INOUT) :: &
ds(land_pts,nsmax) &
! Snow layer depths (m)
,melt_surft(land_pts) &
! Surface snowmelt rate (kg/m2/s)
,sice(land_pts,nsmax) &
! Ice content of snow layers (kg/m2)
,sliq(land_pts,nsmax) &
! Liquid content of snow layers (kg/m2)
,snomlt_sub_htf(land_pts) &
! Sub-canopy snowmelt heat flux (W/m2)
,snowdepth(land_pts) &
! Snow depth (m)
,snowmass(land_pts) &
! Snow mass on the ground (kg/m2)
,tsnow(land_pts,nsmax) &
! Snow layer temperatures (K)
,tsoil1(land_pts) &
! Soil surface layer temperature(K)
,tsurf_elev_surft(land_pts)
! Temperature of elevated subsurface tiles (K)
! Array arguments with intent(out)
REAL, INTENT(OUT) :: &
snow_soil_htf(land_pts) &
! Heat flux into the uppermost subsurface layer
! ! (W/m2)
! ! i.e. snow to ground, or into snow/soil
! ! composite layer
,rho0(land_pts) &
! Density of fresh snow (kg/m3)
! ! Where NSNOW=0, rho0 is the density
! ! of the snowpack.
,sice0(land_pts) &
! Ice content of fresh snow (kg/m2)
! ! Where NSNOW=0, SICE0 is the mass of
! ! the snowpack.
,tsnow0(land_pts) &
! Temperature of fresh snow (K)
,rho_snow(land_pts,nsmax)
! Density of snow layers (kg/m3)
! Local scalars
INTEGER :: &
i &
! land point index
,k &
! Tile point index
,n ! Snow layer index
REAL :: &
asoil &
! 1 / (dz*hcap) for surface soil layer
,can_melt &
! Melt of snow on the canopy (kg/m2/s)
,coldsnow &
! layer cold content (J/m2)
,dsice &
! Change in layer ice content (kg/m2)
,g_snow_surf &
! Heat flux at the snow surface (W/m2)
,sliqmax &
! Maximum liquid content for layer (kg/m2)
,submelt &
! Melt of snow beneath canopy (kg/m2/s)
,smclf &
! Frozen soil moisture content of
! ! surface layer (kg/m2)
,win &
! Water entering layer (kg/m2)
,tsoilw &
,hconsw &
,dzsoilw
! working copies of tsoil, hcon and dzsoil for the loop
! Local arrays
REAL :: &
asnow(nsmax) &
! Effective thermal conductivity (W/m2/k)
,a(nsmax) &
! Below-diagonal matrix elements
,b(nsmax) &
! Diagonal matrix elements
,c(nsmax) &
! Above-diagonal matrix elements
,dt(nsmax) &
! Temperature increments (k)
,r(nsmax) ! Matrix equation rhs
REAL :: rho_temp
! Temporary array for layer density
INTEGER(KIND=jpim), PARAMETER :: zhook_in = 0
INTEGER(KIND=jpim), PARAMETER :: zhook_out = 1
REAL(KIND=jprb) :: zhook_handle
CHARACTER(LEN=*), PARAMETER :: RoutineName='SNOWPACK'
!-----------------------------------------------------------------------
IF (lhook) CALL dr_hook(ModuleName//':'//RoutineName,zhook_in,zhook_handle)
!Required for bit comparison in the UM to ensure all tile points are set to
!zero regardless of fraction present
rho_snow(:,:) = 0.0
snow_soil_htf(:)=0.
DO k=1,surft_pts
i = surft_index(k)
IF (l_elev_land_ice .AND. l_lice_point(i)) THEN
tsoilw=tsurf_elev_surft(i)
hconsw=snow_hcon
dzsoilw=dzsoil_elev
ELSE
tsoilw=tsoil1(i)
hconsw=hcons(i)
dzsoilw=dzsoil(1)
END IF
g_snow_surf = surf_htf_surft(i)
!-----------------------------------------------------------------------
! Add melt to snow surface heat flux, unless using the snow canopy model
!-----------------------------------------------------------------------
IF ( .NOT. cansnowtile ) &
g_snow_surf = g_snow_surf + lf*melt_surft(i)
IF ( nsnow(i) == 0 ) THEN
! Add snowfall (including canopy unloading) to ground snowpack.
snowmass(i) = snowmass(i) + snowfall(i)
IF ( .NOT. cansnowtile ) THEN
!-----------------------------------------------------------------------
! Remove sublimation and melt from snowpack.
!-----------------------------------------------------------------------
snowmass(i) = snowmass(i) - &
( ei_surft(i) + melt_surft(i) ) * timestep
ELSE IF ( tsoilw > tm ) THEN
!-----------------------------------------------------------------------
! For canopy model, calculate melt of snow on ground underneath canopy.
!-----------------------------------------------------------------------
smclf = rho_water * dzsoilw * v_sat1(i) * sthf1(i)
asoil = 1./ ( dzsoilw * hcaps(i) + &
hcapw * (smcl1(i) - smclf) + hcapi*smclf )
submelt = MIN( snowmass(i) / timestep, &
(tsoilw - tm) / (lf * asoil * timestep) )
snowmass(i) = snowmass(i) - submelt * timestep
tsoilw = tsoilw - &
tile_frac(i) * asoil * timestep * lf * submelt
melt_surft(i) = melt_surft(i) + submelt
snomlt_sub_htf(i) = snomlt_sub_htf(i) + &
tile_frac(i) * lf * submelt
END IF
! Set flux into uppermost snow/soil layer (after melting).
snow_soil_htf(i) = surf_htf_surft(i)
! Diagnose snow depth.
snowdepth(i) = snowmass(i) / rho_snow_grnd(i)
! Set values for the surface layer. These are only needed for nsmax>0.
IF ( nsmax > 0 ) THEN
rho0(i) = rho_snow_grnd(i)
sice0(i) = snowmass(i)
tsnow0(i) = MIN( tsoilw, tm )
END IF
! Note with nsmax>0 the density of a shallow pack (nsnow=0) does not
! evolve with time (until it is exhausted). We could consider updating
! the density using a mass-weighted mean of the pack density and that
! of fresh snow, so that a growing pack would reach nsnow=1 more quickly.
! This would only affect a pack that grows from a non-zero state, and
! is not an issue if the pack grows from zero, because in that case the
! the density was previously set to the fresh snow value.
ELSE
!-----------------------------------------------------------------------
! There is at least one snow layer. Calculate heat conduction between
! layers and temperature increments.
!-----------------------------------------------------------------------
! Save rate of melting of snow on the canopy.
IF ( cansnowtile ) THEN
can_melt = melt_surft(i)
ELSE
can_melt = 0.0
END IF
IF ( nsnow(i) == 1 ) THEN
! Single layer of snow.
asnow(1) = 2.0 / &
( snowdepth(i)/ksnow(i,1) + dzsoilw/hconsw )
snow_soil_htf(i) = asnow(1) * ( tsnow(i,1) - tsoilw )
dt(1) = ( g_snow_surf - snow_soil_htf(i) ) * timestep / &
( csnow(i,1) + GAMMA * asnow(1) * timestep )
snow_soil_htf(i) = asnow(1) * &
( tsnow(i,1) + GAMMA*dt(1) - tsoilw )
tsnow(i,1) = tsnow(i,1) + dt(1)
ELSE
! Multiple snow layers.
DO n=1,nsnow(i)-1
asnow(n) = 2.0 / &
( ds(i,n)/ksnow(i,n) + ds(i,n+1)/ksnow(i,n+1) )
END DO
n = nsnow(i)
asnow(n) = 2.0 / ( ds(i,n)/ksnow(i,n) + dzsoilw/hconsw )
a(1) = 0.
b(1) = csnow(i,1) + GAMMA*asnow(1)*timestep
c(1) = -GAMMA * asnow(1) * timestep
r(1) = ( g_snow_surf - asnow(1)*(tsnow(i,1)-tsnow(i,2)) ) &
* timestep
DO n=2,nsnow(i)-1
a(n) = -GAMMA * asnow(n-1) * timestep
b(n) = csnow(i,n) + GAMMA * ( asnow(n-1) + asnow(n) ) &
* timestep
c(n) = -GAMMA * asnow(n) * timestep
r(n) = asnow(n-1)*(tsnow(i,n-1) - tsnow(i,n) ) * timestep &
+ asnow(n)*(tsnow(i,n+1) - tsnow(i,n)) * timestep
END DO
n = nsnow(i)
a(n) = -GAMMA * asnow(n-1) * timestep
b(n) = csnow(i,n) + GAMMA * (asnow(n-1)+asnow(n)) * timestep
c(n) = 0.
r(n) = asnow(n-1)*( tsnow(i,n-1) - tsnow(i,n) ) * timestep &
+ asnow(n) * ( tsoilw - tsnow(i,n) ) * timestep
!-----------------------------------------------------------------------
! Call the tridiagonal solver.
!-----------------------------------------------------------------------
CALL tridag( nsnow(i),nsmax,a,b,c,r,dt )
n = nsnow(i)
snow_soil_htf(i) = asnow(n) * &
( tsnow(i,n) + GAMMA*dt(n) - tsoilw )
DO n=1,nsnow(i)
tsnow(i,n) = tsnow(i,n) + dt(n)
END DO
END IF ! NSNOW
!-----------------------------------------------------------------------
! Melt snow in layers with temperature exceeding melting point
!-----------------------------------------------------------------------
DO n=1,nsnow(i)
coldsnow = csnow(i,n)*(tm - tsnow(i,n))
IF ( coldsnow < 0 ) THEN
tsnow(i,n) = tm
dsice = -coldsnow / lf
IF ( dsice > sice(i,n) ) dsice = sice(i,n)
ds(i,n) = ( 1.0 - dsice/sice(i,n) ) * ds(i,n)
sice(i,n) = sice(i,n) - dsice
sliq(i,n) = sliq(i,n) + dsice
END IF
END DO
! Melt still > 0? - no snow left
!-----------------------------------------------------------------------
! Remove snow by sublimation unless snow is beneath canopy
!-----------------------------------------------------------------------
IF ( .NOT. cansnowtile ) THEN
dsice = MAX( ei_surft(i), 0. ) * timestep
IF ( dsice > 0.0 ) THEN
DO n=1,nsnow(i)
IF ( dsice > sice(i,n) ) THEN
! Layer sublimates completely
dsice = dsice - sice(i,n)
sice(i,n) = 0.
ds(i,n) = 0.
ELSE
! Layer sublimates partially
ds(i,n) = (1.0 - dsice/sice(i,n))*ds(i,n)
sice(i,n) = sice(i,n) - dsice
EXIT ! sublimation exhausted
END IF
END DO
END IF ! DSICE>0
END IF ! CANSNOWTILE
!-----------------------------------------------------------------------
! Move liquid water in excess of holding capacity downwards or refreeze.
!-----------------------------------------------------------------------
! Optionally include infiltration of rainwater and melting from the
! canopy into the snowpack.
IF (l_snow_infilt) THEN
win = infiltration(i) + can_melt * timestep
ELSE
win = 0.0
END IF
DO n=1,nsnow(i)
sliq(i,n) = sliq(i,n) + win
win = 0.0
sliqmax = snowliqcap * rho_water * ds(i,n)
!construct a temporary rho here. Can't guarantee
!sensible values of anything at ths point in the routine. If layer
!has gone (ds=0), just feed everything down to the next layer
IF ( ds(i,n) > EPSILON(0.0) ) THEN
rho_temp = min(rho_ice,(sice(i,n) + sliq(i,n)) / ds(i,n))
ELSE
rho_temp = rho_ice
END IF
!reduce pore density of pack as we approach solid ice
IF (l_elev_land_ice .AND. l_lice_point(i)) THEN
IF(rho_temp >= rho_firn_pore_closure) THEN
sliqmax = 0.0
ELSE IF((rho_temp >= rho_firn_pore_restrict) .AND. &
(rho_temp < rho_firn_pore_closure)) THEN
sliqmax = sliqmax * (rho_firn_pore_closure - rho_temp) / &
(rho_firn_pore_closure - rho_firn_pore_restrict)
ENDIF
ENDIF
IF (sliq(i,n) > sliqmax) THEN
! Liquid capacity exceeded
win = sliq(i,n) - sliqmax
sliq(i,n) = sliqmax
END IF
coldsnow = csnow(i,n)*(tm - tsnow(i,n))
IF (coldsnow > 0) THEN
! Liquid can freeze
dsice = MIN(sliq(i,n), coldsnow / lf)
sliq(i,n) = sliq(i,n) - dsice
sice(i,n) = sice(i,n) + dsice
tsnow(i,n) = tsnow(i,n) + lf*dsice/csnow(i,n)
END IF
END DO
!-----------------------------------------------------------------------
! The remaining liquid water flux is melt.
! Include any separate canopy melt in this diagnostic.
!-----------------------------------------------------------------------
IF ( l_snow_infilt ) THEN
! Canopy melting has already been added to infiltration.
melt_surft(i) = ( win / timestep )
ELSE
melt_surft(i) = ( win / timestep ) + can_melt
END IF
!-----------------------------------------------------------------------
! Diagnose layer densities
!-----------------------------------------------------------------------
DO n=1,nsnow(i)
! rho_snow(i,n) = 0.0
IF ( ds(i,n) > EPSILON(ds) ) &
rho_snow(i,n) = (sice(i,n) + sliq(i,n)) / ds(i,n)
END DO
!-----------------------------------------------------------------------
! Add snowfall and frost as layer 0.
!-----------------------------------------------------------------------
sice0(i) = snowfall(i)
IF ( .NOT. cansnowtile ) &
sice0(i) = snowfall(i) - MIN(ei_surft(i), 0.) * timestep
tsnow0(i) = tsnow(i,1)
rho0(i) = rho_snow_fresh
!-----------------------------------------------------------------------
! Diagnose total snow depth and mass
!-----------------------------------------------------------------------
snowdepth(i) = sice0(i) / rho0(i)
snowmass(i) = sice0(i)
DO n=1,nsnow(i)
snowdepth(i) = snowdepth(i) + ds(i,n)
snowmass(i) = snowmass(i) + sice(i,n) + sliq(i,n)
END DO
END IF ! NSNOW
! tsoil only modified for canopy snow tiles (and not land ice ones,
! although they shouldn't have this switch on anyway)
IF (.NOT. l_elev_land_ice) THEN
tsoil1(i)=tsoilw
ELSE IF (.NOT. l_lice_point(i)) THEN
tsoil1(i)=tsoilw
END IF
END DO ! k (points)
IF (lhook) CALL dr_hook(ModuleName//':'//RoutineName,zhook_out,zhook_handle)
RETURN
END SUBROUTINE snowpack
END MODULE snowpack_mod
| gpl-2.0 |
apollos/Quantum-ESPRESSO | lapack-3.2/SRC/cpptri.f | 1 | 3642 | SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX AP( * )
* ..
*
* Purpose
* =======
*
* CPPTRI computes the inverse of a complex Hermitian positive definite
* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
* computed by CPPTRF.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangular factor is stored in AP;
* = 'L': Lower triangular factor is stored in AP.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)
* On entry, the triangular factor U or L from the Cholesky
* factorization A = U**H*U or A = L*L**H, packed columnwise as
* a linear array. The j-th column of U or L is stored in the
* array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*
* On exit, the upper or lower triangle of the (Hermitian)
* inverse of A, overwriting the input factor U or L.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the (i,i) element of the factor U or L is
* zero, and the inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
REAL AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX CDOTC
EXTERNAL LSAME, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CHPR, CSSCAL, CTPMV, CTPTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL CTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)'.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL CHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = AP( JJ )
CALL CSSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)' * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
IF( J.LT.N )
$ CALL CTPMV( 'Lower', 'Conjugate transpose', 'Non-unit',
$ N-J, AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of CPPTRI
*
END
| gpl-2.0 |
xianyi/OpenBLAS | lapack-netlib/SRC/zgebal.f | 1 | 10649 | *> \brief \b ZGEBAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEBAL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebal.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebal.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebal.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOB
* INTEGER IHI, ILO, INFO, LDA, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION SCALE( * )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEBAL balances a general complex matrix A. This involves, first,
*> permuting A by a similarity transformation to isolate eigenvalues
*> in the first 1 to ILO-1 and last IHI+1 to N elements on the
*> diagonal; and second, applying a diagonal similarity transformation
*> to rows and columns ILO to IHI to make the rows and columns as
*> close in norm as possible. Both steps are optional.
*>
*> Balancing may reduce the 1-norm of the matrix, and improve the
*> accuracy of the computed eigenvalues and/or eigenvectors.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies the operations to be performed on A:
*> = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
*> for i = 1,...,N;
*> = 'P': permute only;
*> = 'S': scale only;
*> = 'B': both permute and scale.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the input matrix A.
*> On exit, A is overwritten by the balanced matrix.
*> If JOB = 'N', A is not referenced.
*> See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[out] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI are set to INTEGER such that on exit
*> A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
*> If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION array, dimension (N)
*> Details of the permutations and scaling factors applied to
*> A. If P(j) is the index of the row and column interchanged
*> with row and column j and D(j) is the scaling factor
*> applied to row and column j, then
*> SCALE(j) = P(j) for j = 1,...,ILO-1
*> = D(j) for j = ILO,...,IHI
*> = P(j) for j = IHI+1,...,N.
*> The order in which the interchanges are made is N to IHI+1,
*> then 1 to ILO-1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The permutations consist of row and column interchanges which put
*> the matrix in the form
*>
*> ( T1 X Y )
*> P A P = ( 0 B Z )
*> ( 0 0 T2 )
*>
*> where T1 and T2 are upper triangular matrices whose eigenvalues lie
*> along the diagonal. The column indices ILO and IHI mark the starting
*> and ending columns of the submatrix B. Balancing consists of applying
*> a diagonal similarity transformation inv(D) * B * D to make the
*> 1-norms of each row of B and its corresponding column nearly equal.
*> The output matrix is
*>
*> ( T1 X*D Y )
*> ( 0 inv(D)*B*D inv(D)*Z ).
*> ( 0 0 T2 )
*>
*> Information about the permutations P and the diagonal matrix D is
*> returned in the vector SCALE.
*>
*> This subroutine is based on the EISPACK routine CBAL.
*>
*> Modified by Tzu-Yi Chen, Computer Science Division, University of
*> California at Berkeley, USA
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER JOB
INTEGER IHI, ILO, INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION SCALE( * )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION SCLFAC
PARAMETER ( SCLFAC = 2.0D+0 )
DOUBLE PRECISION FACTOR
PARAMETER ( FACTOR = 0.95D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOCONV
INTEGER I, ICA, IEXC, IRA, J, K, L, M
DOUBLE PRECISION C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
$ SFMIN2
* ..
* .. External Functions ..
LOGICAL DISNAN, LSAME
INTEGER IZAMAX
DOUBLE PRECISION DLAMCH, DZNRM2
EXTERNAL DISNAN, LSAME, IZAMAX, DLAMCH, DZNRM2
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
*
* Test the input parameters
*
INFO = 0
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEBAL', -INFO )
RETURN
END IF
*
K = 1
L = N
*
IF( N.EQ.0 )
$ GO TO 210
*
IF( LSAME( JOB, 'N' ) ) THEN
DO 10 I = 1, N
SCALE( I ) = ONE
10 CONTINUE
GO TO 210
END IF
*
IF( LSAME( JOB, 'S' ) )
$ GO TO 120
*
* Permutation to isolate eigenvalues if possible
*
GO TO 50
*
* Row and column exchange.
*
20 CONTINUE
SCALE( M ) = J
IF( J.EQ.M )
$ GO TO 30
*
CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
CALL ZSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
*
30 CONTINUE
GO TO ( 40, 80 )IEXC
*
* Search for rows isolating an eigenvalue and push them down.
*
40 CONTINUE
IF( L.EQ.1 )
$ GO TO 210
L = L - 1
*
50 CONTINUE
DO 70 J = L, 1, -1
*
DO 60 I = 1, L
IF( I.EQ.J )
$ GO TO 60
IF( DBLE( A( J, I ) ).NE.ZERO .OR. DIMAG( A( J, I ) ).NE.
$ ZERO )GO TO 70
60 CONTINUE
*
M = L
IEXC = 1
GO TO 20
70 CONTINUE
*
GO TO 90
*
* Search for columns isolating an eigenvalue and push them left.
*
80 CONTINUE
K = K + 1
*
90 CONTINUE
DO 110 J = K, L
*
DO 100 I = K, L
IF( I.EQ.J )
$ GO TO 100
IF( DBLE( A( I, J ) ).NE.ZERO .OR. DIMAG( A( I, J ) ).NE.
$ ZERO )GO TO 110
100 CONTINUE
*
M = K
IEXC = 2
GO TO 20
110 CONTINUE
*
120 CONTINUE
DO 130 I = K, L
SCALE( I ) = ONE
130 CONTINUE
*
IF( LSAME( JOB, 'P' ) )
$ GO TO 210
*
* Balance the submatrix in rows K to L.
*
* Iterative loop for norm reduction
*
SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
SFMAX1 = ONE / SFMIN1
SFMIN2 = SFMIN1*SCLFAC
SFMAX2 = ONE / SFMIN2
140 CONTINUE
NOCONV = .FALSE.
*
DO 200 I = K, L
*
C = DZNRM2( L-K+1, A( K, I ), 1 )
R = DZNRM2( L-K+1, A( I, K ), LDA )
ICA = IZAMAX( L, A( 1, I ), 1 )
CA = ABS( A( ICA, I ) )
IRA = IZAMAX( N-K+1, A( I, K ), LDA )
RA = ABS( A( I, IRA+K-1 ) )
*
* Guard against zero C or R due to underflow.
*
IF( C.EQ.ZERO .OR. R.EQ.ZERO )
$ GO TO 200
G = R / SCLFAC
F = ONE
S = C + R
160 CONTINUE
IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
$ MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
IF( DISNAN( C+F+CA+R+G+RA ) ) THEN
*
* Exit if NaN to avoid infinite loop
*
INFO = -3
CALL XERBLA( 'ZGEBAL', -INFO )
RETURN
END IF
F = F*SCLFAC
C = C*SCLFAC
CA = CA*SCLFAC
R = R / SCLFAC
G = G / SCLFAC
RA = RA / SCLFAC
GO TO 160
*
170 CONTINUE
G = C / SCLFAC
180 CONTINUE
IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
$ MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
F = F / SCLFAC
C = C / SCLFAC
G = G / SCLFAC
CA = CA / SCLFAC
R = R*SCLFAC
RA = RA*SCLFAC
GO TO 180
*
* Now balance.
*
190 CONTINUE
IF( ( C+R ).GE.FACTOR*S )
$ GO TO 200
IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
IF( F*SCALE( I ).LE.SFMIN1 )
$ GO TO 200
END IF
IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
IF( SCALE( I ).GE.SFMAX1 / F )
$ GO TO 200
END IF
G = ONE / F
SCALE( I ) = SCALE( I )*F
NOCONV = .TRUE.
*
CALL ZDSCAL( N-K+1, G, A( I, K ), LDA )
CALL ZDSCAL( L, F, A( 1, I ), 1 )
*
200 CONTINUE
*
IF( NOCONV )
$ GO TO 140
*
210 CONTINUE
ILO = K
IHI = L
*
RETURN
*
* End of ZGEBAL
*
END
| bsd-3-clause |
apollos/Quantum-ESPRESSO | lapack-3.2/INSTALL/dlamchtst.f | 2 | 1523 | PROGRAM TEST3
*
* -- LAPACK test routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Local Scalars ..
DOUBLE PRECISION BASE, EMAX, EMIN, EPS, PREC, RMAX, RMIN, RND,
$ SFMIN, T
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
SFMIN = DLAMCH( 'Safe minimum' )
BASE = DLAMCH( 'Base' )
PREC = DLAMCH( 'Precision' )
T = DLAMCH( 'Number of digits in mantissa' )
RND = DLAMCH( 'Rounding mode' )
EMIN = DLAMCH( 'Minimum exponent' )
RMIN = DLAMCH( 'Underflow threshold' )
EMAX = DLAMCH( 'Largest exponent' )
RMAX = DLAMCH( 'Overflow threshold' )
*
WRITE( 6, * )' Epsilon = ', EPS
WRITE( 6, * )' Safe minimum = ', SFMIN
WRITE( 6, * )' Base = ', BASE
WRITE( 6, * )' Precision = ', PREC
WRITE( 6, * )' Number of digits in mantissa = ', T
WRITE( 6, * )' Rounding mode = ', RND
WRITE( 6, * )' Minimum exponent = ', EMIN
WRITE( 6, * )' Underflow threshold = ', RMIN
WRITE( 6, * )' Largest exponent = ', EMAX
WRITE( 6, * )' Overflow threshold = ', RMAX
WRITE( 6, * )' Reciprocal of safe minimum = ', 1 / SFMIN
*
END
| gpl-2.0 |
apollos/Quantum-ESPRESSO | lapack-3.2/SRC/zptsv.f | 1 | 3168 | SUBROUTINE ZPTSV( N, NRHS, D, E, B, LDB, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * )
COMPLEX*16 B( LDB, * ), E( * )
* ..
*
* Purpose
* =======
*
* ZPTSV computes the solution to a complex system of linear equations
* A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
* matrix, and X and B are N-by-NRHS matrices.
*
* A is factored as A = L*D*L**H, and the factored form of A is then
* used to solve the system of equations.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal matrix
* A. On exit, the n diagonal elements of the diagonal matrix
* D from the factorization A = L*D*L**H.
*
* E (input/output) COMPLEX*16 array, dimension (N-1)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix A. On exit, the (n-1) subdiagonal elements of the
* unit bidiagonal factor L from the L*D*L**H factorization of
* A. E can also be regarded as the superdiagonal of the unit
* bidiagonal factor U from the U**H*D*U factorization of A.
*
* B (input/output) COMPLEX*16 array, dimension (LDB,N)
* On entry, the N-by-NRHS right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i is not
* positive definite, and the solution has not been
* computed. The factorization has not been completed
* unless i = N.
*
* =====================================================================
*
* .. External Subroutines ..
EXTERNAL XERBLA, ZPTTRF, ZPTTRS
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( NRHS.LT.0 ) THEN
INFO = -2
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPTSV ', -INFO )
RETURN
END IF
*
* Compute the L*D*L' (or U'*D*U) factorization of A.
*
CALL ZPTTRF( N, D, E, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL ZPTTRS( 'Lower', N, NRHS, D, E, B, LDB, INFO )
END IF
RETURN
*
* End of ZPTSV
*
END
| gpl-2.0 |
rmcgibbo/scipy | scipy/linalg/src/id_dist/src/idz_sfft.f | 139 | 5011 | c this file contains the following user-callable routines:
c
c
c routine idz_sffti initializes routine idz_sfft.
c
c routine idz_sfft rapidly computes a subset of the entries
c of the DFT of a vector, composed with permutation matrices
c both on input and on output.
c
c routine idz_ldiv finds the greatest integer less than or equal
c to a specified integer, that is divisible by another (larger)
c specified integer.
c
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c
c
c
subroutine idz_ldiv(l,n,m)
c
c finds the greatest integer less than or equal to l
c that divides n.
c
c input:
c l -- integer at least as great as m
c n -- integer divisible by m
c
c output:
c m -- greatest integer less than or equal to l that divides n
c
implicit none
integer n,l,m
c
c
m = l
c
1000 continue
if(m*(n/m) .eq. n) goto 2000
c
m = m-1
goto 1000
c
2000 continue
c
c
return
end
c
c
c
c
subroutine idz_sffti(l,ind,n,wsave)
c
c initializes wsave for use with routine idz_sfft.
c
c input:
c l -- number of entries in the output of idz_sfft to compute
c ind -- indices of the entries in the output of idz_sfft
c to compute
c n -- length of the vector to be transformed
c
c output:
c wsave -- array needed by routine idz_sfft for processing
c
implicit none
integer l,ind(l),n,nblock,ii,m,idivm,imodm,i,j,k
real*8 r1,twopi,fact
complex*16 wsave(2*l+15+3*n),ci,twopii
c
ci = (0,1)
r1 = 1
twopi = 2*4*atan(r1)
twopii = twopi*ci
c
c
c Determine the block lengths for the FFTs.
c
call idz_ldiv(l,n,nblock)
m = n/nblock
c
c
c Initialize wsave for use with routine zfftf.
c
call zffti(nblock,wsave)
c
c
c Calculate the coefficients in the linear combinations
c needed for the direct portion of the calculation.
c
fact = 1/sqrt(r1*n)
c
ii = 2*l+15
c
do j = 1,l
c
i = ind(j)
c
idivm = (i-1)/m
imodm = (i-1)-m*idivm
c
do k = 1,m
wsave(ii+m*(j-1)+k) = exp(-twopii*imodm*(k-1)/(r1*m))
1 * exp(-twopii*(k-1)*idivm/(r1*n)) * fact
enddo ! k
c
enddo ! j
c
c
return
end
c
c
c
c
subroutine idz_sfft(l,ind,n,wsave,v)
c
c computes a subset of the entries of the DFT of v,
c composed with permutation matrices both on input and on output,
c via a two-stage procedure (routine zfftf2 is supposed
c to calculate the full vector from which idz_sfft returns
c a subset of the entries, when zfftf2 has the same parameter
c nblock as in the present routine).
c
c input:
c l -- number of entries in the output to compute
c ind -- indices of the entries of the output to compute
c n -- length of v
c v -- vector to be transformed
c wsave -- processing array initialized by routine idz_sffti
c
c output:
c v -- entries indexed by ind are given their appropriate
c transformed values
c
c _N.B._: The user has to boost the memory allocations
c for wsave (and change iii accordingly) if s/he wishes
c to use strange sizes of n; it's best to stick to powers
c of 2.
c
c references:
c Sorensen and Burrus, "Efficient computation of the DFT with
c only a subset of input or output points,"
c IEEE Transactions on Signal Processing, 41 (3): 1184-1200,
c 1993.
c Woolfe, Liberty, Rokhlin, Tygert, "A fast randomized algorithm
c for the approximation of matrices," Applied and
c Computational Harmonic Analysis, 25 (3): 335-366, 2008;
c Section 3.3.
c
implicit none
integer n,m,l,k,j,ind(l),i,idivm,nblock,ii,iii
real*8 r1,twopi
complex*16 v(n),wsave(2*l+15+3*n),ci,sum
c
ci = (0,1)
r1 = 1
twopi = 2*4*atan(r1)
c
c
c Determine the block lengths for the FFTs.
c
call idz_ldiv(l,n,nblock)
c
c
m = n/nblock
c
c
c FFT each block of length nblock of v.
c
do k = 1,m
call zfftf(nblock,v(nblock*(k-1)+1),wsave)
enddo ! k
c
c
c Transpose v to obtain wsave(2*l+15+2*n+1 : 2*l+15+3*n).
c
iii = 2*l+15+2*n
c
do k = 1,m
do j = 1,nblock
wsave(iii+m*(j-1)+k) = v(nblock*(k-1)+j)
enddo ! j
enddo ! k
c
c
c Directly calculate the desired entries of v.
c
ii = 2*l+15
iii = 2*l+15+2*n
c
do j = 1,l
c
i = ind(j)
c
idivm = (i-1)/m
c
sum = 0
c
do k = 1,m
sum = sum + wsave(ii+m*(j-1)+k) * wsave(iii+m*idivm+k)
enddo ! k
c
v(i) = sum
c
enddo ! j
c
c
return
end
| bsd-3-clause |
kolawoletech/ce-espresso | upftools/casino_pp.f90 | 2 | 17242 |
MODULE casino_pp
!
! All variables read from CASINO file format
!
! trailing underscore means that a variable with the same name
! is used in module 'upf' containing variables to be written
!
USE kinds, ONLY : dp
CHARACTER(len=20) :: dft_
CHARACTER(len=2) :: psd_
REAL(dp) :: zp_
INTEGER nlc, nnl, lmax_, lloc, nchi, rel_
LOGICAL :: numeric, bhstype, nlcc_
CHARACTER(len=2), ALLOCATABLE :: els_(:)
REAL(dp) :: zmesh
REAL(dp) :: xmin = -7.0_dp
REAL(dp) :: dx = 20.0_dp/1500.0_dp
REAL(dp) :: tn_prefac = 0.75E-6_dp
LOGICAL :: tn_grid = .true.
REAL(dp), ALLOCATABLE:: r_(:)
INTEGER :: mesh_
REAL(dp), ALLOCATABLE:: vnl(:,:)
INTEGER, ALLOCATABLE:: lchi_(:), nns_(:)
REAL(dp), ALLOCATABLE:: chi_(:,:), oc_(:)
CONTAINS
!
! ----------------------------------------------------------
SUBROUTINE read_casino(iunps,nofiles, waveunit)
! ----------------------------------------------------------
!
! Reads in a CASINO tabulated pp file and it's associated
! awfn files. Some basic processing such as removing the
! r factors from the potentials is also performed.
USE kinds, ONLY : dp
IMPLICIT NONE
TYPE :: wavfun_list
INTEGER :: occ,eup,edwn, nquant, lquant
CHARACTER(len=2) :: label
#ifdef __STD_F95
REAL(dp), POINTER :: wavefunc(:)
#else
REAL(dp), ALLOCATABLE :: wavefunc(:)
#endif
TYPE (wavfun_list), POINTER :: p
END TYPE wavfun_list
TYPE :: channel_list
INTEGER :: lquant
#ifdef __STD_F95
REAL(dp), POINTER :: channel(:)
#else
REAL(dp), ALLOCATABLE :: channel(:)
#endif
TYPE (channel_list), POINTER :: p
END TYPE channel_list
TYPE (channel_list), POINTER :: phead
TYPE (channel_list), POINTER :: pptr
TYPE (channel_list), POINTER :: ptail
TYPE (wavfun_list), POINTER :: mhead
TYPE (wavfun_list), POINTER :: mptr
TYPE (wavfun_list), POINTER :: mtail
INTEGER :: iunps, nofiles, ios
!
LOGICAL :: groundstate, found
CHARACTER(len=2) :: label, rellab
INTEGER :: l, i, ir, nb, gsorbs, j,k,m,tmp, lquant, orbs, nquant
INTEGER, ALLOCATABLE :: gs(:,:)
INTEGER, INTENT(in) :: waveunit(nofiles)
NULLIFY ( mhead, mptr, mtail )
dft_ = 'HF' !Hardcoded at the moment should eventually be HF anyway
nlc = 0 !These two values are always 0 for numeric pps
nnl = 0 !so lets just hard code them
nlcc_ = .false. !Again these two are alwas false for CASINO pps
bhstype = .false.
READ(iunps,'(a2,35x,a2)') rellab, psd_
READ(iunps,*)
IF ( rellab == 'DF' ) THEN
rel_=1
ELSE
rel_=0
ENDIF
READ(iunps,*) zmesh,zp_ !Here we are reading zmesh (atomic #) and
DO i=1,3 !zp_ (pseudo charge)
READ(iunps,*)
ENDDO
READ(iunps,*) lloc !reading in lloc
IF ( zp_<=0d0 ) &
CALL errore( 'read_casino','Wrong zp ',1 )
IF ( lloc>3.or.lloc<0 ) &
CALL errore( 'read_casino','Wrong lloc ',1 )
!
! compute the radial mesh
!
DO i=1,3
READ(iunps,*)
ENDDO
READ(iunps,*) mesh_ !Reading in total no. of mesh points
ALLOCATE( r_(mesh_))
READ(iunps,*)
DO i=1,mesh_
READ(iunps,*) r_(i)
ENDDO
! Read in the different channels of V_nl
ALLOCATE(phead)
ptail => phead
pptr => phead
ALLOCATE( pptr%channel(mesh_) )
READ(iunps, '(15x,I1,7x)') l
pptr%lquant=l
READ(iunps, *) (pptr%channel(ir),ir=1,mesh_)
DO
READ(iunps, '(15x,I1,7x)', IOSTAT=ios) l
IF (ios /= 0 ) THEN
exit
ENDIF
ALLOCATE(pptr%p)
pptr=> pptr%p
ptail=> pptr
ALLOCATE( pptr%channel(mesh_) )
pptr%lquant=l
READ(iunps, *) (pptr%channel(ir),ir=1,mesh_)
ENDDO
!Compute the number of channels read in.
lmax_ =-1
pptr => phead
DO
IF ( .not. associated(pptr) )exit
lmax_=lmax_+1
pptr =>pptr%p
ENDDO
ALLOCATE(vnl(mesh_,0:lmax_))
i=0
pptr => phead
DO
IF ( .not. associated(pptr) )exit
! lchi_(i) = pptr%lquant
DO ir=1,mesh_
vnl(ir,i) = pptr%channel(ir)
ENDDO
DEALLOCATE( pptr%channel )
pptr =>pptr%p
i=i+1
ENDDO
!Clean up the linked list (deallocate it)
DO
IF ( .not. associated(phead) )exit
pptr => phead
phead => phead%p
DEALLOCATE( pptr )
ENDDO
DO l = 0, lmax_
DO ir = 1, mesh_
vnl(ir,l) = vnl(ir,l)/r_(ir) !Removing the factor of r CASINO has
ENDDO
! correcting for possible divide by zero
IF ( r_(1) == 0 ) THEN
vnl(1,l) = 0
ENDIF
ENDDO
ALLOCATE(mhead)
mtail => mhead
mptr => mhead
NULLIFY(mtail%p)
groundstate=.true.
DO j=1,nofiles
DO i=1,4
READ(waveunit(j),*)
ENDDO
READ(waveunit(j),*) orbs
IF ( groundstate ) THEN
ALLOCATE( gs(orbs,3) )
gs = 0
gsorbs = orbs
ENDIF
DO i=1,2
READ(waveunit(j),*)
ENDDO
READ(waveunit(j),*) mtail%eup, mtail%edwn
READ(waveunit(j),*)
DO i=1,mtail%eup+mtail%edwn
READ(waveunit(j),*) tmp, nquant, lquant
IF ( groundstate ) THEN
found = .true.
DO m=1,orbs
IF ( (nquant==gs(m,1) .and. lquant==gs(m,2)) ) THEN
gs(m,3) = gs(m,3) + 1
exit
ENDIF
found = .false.
ENDDO
IF (.not. found ) THEN
DO m=1,orbs
IF ( gs(m,1) == 0 ) THEN
gs(m,1) = nquant
gs(m,2) = lquant
gs(m,3) = 1
exit
ENDIF
ENDDO
ENDIF
ENDIF
ENDDO
READ(waveunit(j),*)
READ(waveunit(j),*)
DO i=1,mesh_
READ(waveunit(j),*)
ENDDO
DO k=1,orbs
READ(waveunit(j),'(13x,a2)', err=300) label
READ(waveunit(j),*) tmp, nquant, lquant
IF ( .not. groundstate ) THEN
found = .false.
DO m = 1,gsorbs
IF ( nquant == gs(m,1) .and. lquant == gs(m,2) ) THEN
found = .true.
exit
ENDIF
ENDDO
mptr => mhead
DO
IF ( .not. associated(mptr) )exit
IF ( nquant == mptr%nquant .and. lquant == mptr%lquant ) found = .true.
mptr =>mptr%p
ENDDO
IF ( found ) THEN
DO i=1,mesh_
READ(waveunit(j),*)
ENDDO
CYCLE
ENDIF
ENDIF
#ifdef __STD_F95
IF ( associated(mtail%wavefunc) ) THEN
#else
IF ( allocated(mtail%wavefunc) ) THEN
#endif
ALLOCATE(mtail%p)
mtail=>mtail%p
NULLIFY(mtail%p)
ALLOCATE( mtail%wavefunc(mesh_) )
ELSE
ALLOCATE( mtail%wavefunc(mesh_) )
ENDIF
mtail%label = label
mtail%nquant = nquant
mtail%lquant = lquant
READ(waveunit(j), *, err=300) (mtail%wavefunc(ir),ir=1,mesh_)
ENDDO
groundstate = .false.
ENDDO
nchi =0
mptr => mhead
DO
IF ( .not. associated(mptr) )exit
nchi=nchi+1
mptr =>mptr%p
ENDDO
ALLOCATE(lchi_(nchi), els_(nchi), nns_(nchi))
ALLOCATE(oc_(nchi))
ALLOCATE(chi_(mesh_,nchi))
oc_ = 0
!Sort out the occupation numbers
DO i=1,gsorbs
oc_(i)=gs(i,3)
ENDDO
DEALLOCATE( gs )
i=1
mptr => mhead
DO
IF ( .not. associated(mptr) )exit
nns_(i) = mptr%nquant
lchi_(i) = mptr%lquant
els_(i) = mptr%label
DO ir=1,mesh_
chi_(ir:,i) = mptr%wavefunc(ir)
ENDDO
DEALLOCATE( mptr%wavefunc )
mptr =>mptr%p
i=i+1
ENDDO
!Clean up the linked list (deallocate it)
DO
IF ( .not. associated(mhead) )exit
mptr => mhead
mhead => mhead%p
DEALLOCATE( mptr )
ENDDO
! ----------------------------------------------------------
WRITE (0,'(a)') 'Pseudopotential successfully read'
! ----------------------------------------------------------
RETURN
300 CALL errore('read_casino','pseudo file is empty or wrong',1)
END SUBROUTINE read_casino
! ----------------------------------------------------------
SUBROUTINE convert_casino(upf_out)
! ----------------------------------------------------------
USE kinds, ONLY : dp
USE upf_module
USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid
USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, &
get_igcx, get_igcc
IMPLICIT NONE
TYPE(pseudo_upf), INTENT(inout) :: upf_out
REAL(dp), ALLOCATABLE :: aux(:)
REAL(dp) :: vll
INTEGER :: kkbeta, l, iv, ir, i, nb
WRITE(upf_out%generated, '("From a Trail & Needs tabulated &
&PP for CASINO")')
WRITE(upf_out%author,'("unknown")')
WRITE(upf_out%date,'("unknown")')
upf_out%comment = 'Info: automatically converted from CASINO &
&Tabulated format'
IF (rel_== 0) THEN
upf_out%rel = 'no'
ELSEIF (rel_==1 ) THEN
upf_out%rel = 'scalar'
ELSE
upf_out%rel = 'full'
ENDIF
IF (xmin == 0 ) THEN
xmin= log(zmesh * r_(2) )
ENDIF
! Allocate and assign the raidal grid
upf_out%mesh = mesh_
upf_out%zmesh = zmesh
upf_out%dx = dx
upf_out%xmin = xmin
ALLOCATE(upf_out%rab(upf_out%mesh))
ALLOCATE( upf_out%r(upf_out%mesh))
upf_out%r = r_
DEALLOCATE( r_ )
upf_out%rmax = maxval(upf_out%r)
!
! subtract out the local part from the different
! potential channels
!
DO l = 0, lmax_
IF ( l/=lloc ) vnl(:,l) = vnl(:,l) - vnl(:,lloc)
ENDDO
ALLOCATE (upf_out%vloc(upf_out%mesh))
upf_out%vloc(:) = vnl(:,lloc)
! Compute the derivatives of the grid. The Trail and Needs
! grids use r(i) = (tn_prefac / zmesh)*( exp(i*dx) - 1 ) so
! must be treated differently to standard QE grids.
IF ( tn_grid ) THEN
DO ir = 1, upf_out%mesh
upf_out%rab(ir) = dx * ( upf_out%r(ir) + tn_prefac / zmesh )
ENDDO
ELSE
DO ir = 1, upf_out%mesh
upf_out%rab(ir) = dx * upf_out%r(ir)
ENDDO
ENDIF
!
! compute the atomic charges
!
ALLOCATE (upf_out%rho_at(upf_out%mesh))
upf_out%rho_at(:) = 0.d0
DO nb = 1, nchi
IF( oc_(nb)/=0.d0) THEN
upf_out%rho_at(:) = upf_out%rho_at(:) +&
& oc_(nb)*chi_(:,nb)**2
ENDIF
ENDDO
! This section deals with the pseudo wavefunctions.
! These values are just given directly to the pseudo_upf structure
upf_out%nwfc = nchi
ALLOCATE( upf_out%oc(upf_out%nwfc), upf_out%epseu(upf_out%nwfc) )
ALLOCATE( upf_out%lchi(upf_out%nwfc), upf_out%nchi(upf_out%nwfc) )
ALLOCATE( upf_out%els(upf_out%nwfc) )
ALLOCATE( upf_out%rcut_chi(upf_out%nwfc) )
ALLOCATE( upf_out%rcutus_chi (upf_out%nwfc) )
DO i=1, upf_out%nwfc
upf_out%nchi(i) = nns_(i)
upf_out%lchi(i) = lchi_(i)
upf_out%rcut_chi(i) = 0.0d0
upf_out%rcutus_chi(i)= 0.0d0
upf_out%oc (i) = oc_(i)
upf_out%els(i) = els_(i)
upf_out%epseu(i) = 0.0d0
ENDDO
DEALLOCATE (lchi_, oc_, nns_)
upf_out%psd = psd_
upf_out%typ = 'NC'
upf_out%nlcc = nlcc_
upf_out%zp = zp_
upf_out%etotps = 0.0d0
upf_out%ecutrho=0.0d0
upf_out%ecutwfc=0.0d0
upf_out%lloc=lloc
IF ( lmax_ == lloc) THEN
upf_out%lmax = lmax_-1
ELSE
upf_out%lmax = lmax_
ENDIF
upf_out%nbeta = lmax_
ALLOCATE ( upf_out%els_beta(upf_out%nbeta) )
ALLOCATE ( upf_out%rcut(upf_out%nbeta) )
ALLOCATE ( upf_out%rcutus(upf_out%nbeta) )
upf_out%rcut=0.0d0
upf_out%rcutus=0.0d0
upf_out%dft =dft_
IF (upf_out%nbeta > 0) THEN
ALLOCATE(upf_out%kbeta(upf_out%nbeta), upf_out%lll(upf_out%nbeta))
upf_out%kkbeta=upf_out%mesh
DO ir = 1,upf_out%mesh
IF ( upf_out%r(ir) > upf_out%rmax ) THEN
upf_out%kkbeta=ir
exit
ENDIF
ENDDO
! make sure kkbeta is odd as required for simpson
IF(mod(upf_out%kkbeta,2) == 0) upf_out%kkbeta=upf_out%kkbeta-1
upf_out%kbeta(:) = upf_out%kkbeta
ALLOCATE(aux(upf_out%kkbeta))
ALLOCATE(upf_out%beta(upf_out%mesh,upf_out%nbeta))
ALLOCATE(upf_out%dion(upf_out%nbeta,upf_out%nbeta))
upf_out%dion(:,:) =0.d0
iv=0
DO i=1,upf_out%nwfc
l=upf_out%lchi(i)
IF (l/=upf_out%lloc) THEN
iv=iv+1
upf_out%els_beta(iv)=upf_out%els(i)
upf_out%lll(iv)=l
DO ir=1,upf_out%kkbeta
upf_out%beta(ir,iv)=chi_(ir,i)*vnl(ir,l)
aux(ir) = chi_(ir,i)**2*vnl(ir,l)
ENDDO
CALL simpson(upf_out%kkbeta,aux,upf_out%rab,vll)
upf_out%dion(iv,iv) = 1.0d0/vll
ENDIF
IF(iv >= upf_out%nbeta) exit ! skip additional pseudo wfns
ENDDO
DEALLOCATE (vnl, aux)
!
! redetermine ikk2
!
DO iv=1,upf_out%nbeta
upf_out%kbeta(iv)=upf_out%kkbeta
DO ir = upf_out%kkbeta,1,-1
IF ( abs(upf_out%beta(ir,iv)) > 1.d-12 ) THEN
upf_out%kbeta(iv)=ir
exit
ENDIF
ENDDO
ENDDO
ENDIF
ALLOCATE (upf_out%chi(upf_out%mesh,upf_out%nwfc))
upf_out%chi = chi_
DEALLOCATE (chi_)
RETURN
END SUBROUTINE convert_casino
SUBROUTINE write_casino_tab(upf_in, grid)
USE upf_module
USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid
IMPLICIT NONE
TYPE(pseudo_upf), INTENT(in) :: upf_in
TYPE(radial_grid_type), INTENT(in) :: grid
INTEGER :: i, lp1
INTEGER, EXTERNAL :: atomic_number
WRITE(6,*) "Converted Pseudopotential in REAL space for ", upf_in%psd
WRITE(6,*) "Atomic number and pseudo-charge"
WRITE(6,"(I3,F8.2)") atomic_number( upf_in%psd ),upf_in%zp
WRITE(6,*) "Energy units (rydberg/hartree/ev):"
WRITE(6,*) "rydberg"
WRITE(6,*) "Angular momentum of local component (0=s,1=p,2=d..)"
WRITE(6,"(I2)") upf_in%lloc
WRITE(6,*) "NLRULE override (1) VMC/DMC (2) config gen (0 ==> &
&input/default VALUE)"
WRITE(6,*) "0 0"
WRITE(6,*) "Number of grid points"
WRITE(6,*) grid%mesh
WRITE(6,*) "R(i) in atomic units"
WRITE(6, "(T4,E22.15)") grid%r(:)
lp1 = size ( vnl, 2 )
DO i=1,lp1
WRITE(6, "(A,I1,A)") 'r*potential (L=',i-1,') in Ry'
WRITE(6, "(T4,E22.15)") vnl(:,i)
ENDDO
END SUBROUTINE write_casino_tab
SUBROUTINE conv_upf2casino(upf_in,grid)
USE upf_module
USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid
IMPLICIT NONE
TYPE(pseudo_upf), INTENT(in) :: upf_in
TYPE(radial_grid_type), INTENT(in) :: grid
INTEGER :: i, l, channels
REAL(dp), PARAMETER :: offset=1E-20_dp
!This is an offset added to the wavefunctions to
!eliminate any divide by zeros that may be caused by
!zeroed wavefunction terms.
channels=upf_in%nbeta+1
ALLOCATE ( vnl(grid%mesh,channels) )
!Set up the local component of each channel
DO i=1,channels
vnl(:,i)=grid%r(:)*upf_in%vloc(:)
ENDDO
DO i=1,upf_in%nbeta
l=upf_in%lll(i)+1
!Check if any wfc components have been zeroed
!and apply the offset IF they have
IF ( minval(abs(upf_in%chi(:,l))) /= 0 ) THEN
vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)) &
*grid%r(:)) + vnl(:,l)
ELSE
WRITE(0,"(A,ES10.3,A)") 'Applying ',offset , ' offset to &
&wavefunction to avoid divide by zero'
vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)+offset) &
*grid%r(:)) + vnl(:,l)
ENDIF
ENDDO
END SUBROUTINE conv_upf2casino
END MODULE casino_pp
| gpl-2.0 |
apollos/Quantum-ESPRESSO | lapack-3.2/TESTING/MATGEN/clarot.f | 6 | 10109 | SUBROUTINE CLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT,
$ XRIGHT )
*
* -- LAPACK auxiliary test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
LOGICAL LLEFT, LRIGHT, LROWS
INTEGER LDA, NL
COMPLEX C, S, XLEFT, XRIGHT
* ..
* .. Array Arguments ..
COMPLEX A( * )
* ..
*
* Purpose
* =======
*
* CLAROT applies a (Givens) rotation to two adjacent rows or
* columns, where one element of the first and/or last column/row
* for use on matrices stored in some format other than GE, so
* that elements of the matrix may be used or modified for which
* no array element is provided.
*
* One example is a symmetric matrix in SB format (bandwidth=4), for
* which UPLO='L': Two adjacent rows will have the format:
*
* row j: * * * * * . . . .
* row j+1: * * * * * . . . .
*
* '*' indicates elements for which storage is provided,
* '.' indicates elements for which no storage is provided, but
* are not necessarily zero; their values are determined by
* symmetry. ' ' indicates elements which are necessarily zero,
* and have no storage provided.
*
* Those columns which have two '*'s can be handled by SROT.
* Those columns which have no '*'s can be ignored, since as long
* as the Givens rotations are carefully applied to preserve
* symmetry, their values are determined.
* Those columns which have one '*' have to be handled separately,
* by using separate variables "p" and "q":
*
* row j: * * * * * p . . .
* row j+1: q * * * * * . . . .
*
* The element p would have to be set correctly, then that column
* is rotated, setting p to its new value. The next call to
* CLAROT would rotate columns j and j+1, using p, and restore
* symmetry. The element q would start out being zero, and be
* made non-zero by the rotation. Later, rotations would presumably
* be chosen to zero q out.
*
* Typical Calling Sequences: rotating the i-th and (i+1)-st rows.
* ------- ------- ---------
*
* General dense matrix:
*
* CALL CLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S,
* A(i,1),LDA, DUMMY, DUMMY)
*
* General banded matrix in GB format:
*
* j = MAX(1, i-KL )
* NL = MIN( N, i+KU+1 ) + 1-j
* CALL CLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S,
* A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT )
*
* [ note that i+1-j is just MIN(i,KL+1) ]
*
* Symmetric banded matrix in SY format, bandwidth K,
* lower triangle only:
*
* j = MAX(1, i-K )
* NL = MIN( K+1, i ) + 1
* CALL CLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S,
* A(i,j), LDA, XLEFT, XRIGHT )
*
* Same, but upper triangle only:
*
* NL = MIN( K+1, N-i ) + 1
* CALL CLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S,
* A(i,i), LDA, XLEFT, XRIGHT )
*
* Symmetric banded matrix in SB format, bandwidth K,
* lower triangle only:
*
* [ same as for SY, except:]
* . . . .
* A(i+1-j,j), LDA-1, XLEFT, XRIGHT )
*
* [ note that i+1-j is just MIN(i,K+1) ]
*
* Same, but upper triangle only:
* . . .
* A(K+1,i), LDA-1, XLEFT, XRIGHT )
*
* Rotating columns is just the transpose of rotating rows, except
* for GB and SB: (rotating columns i and i+1)
*
* GB:
* j = MAX(1, i-KU )
* NL = MIN( N, i+KL+1 ) + 1-j
* CALL CLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S,
* A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM )
*
* [note that KU+j+1-i is just MAX(1,KU+2-i)]
*
* SB: (upper triangle)
*
* . . . . . .
* A(K+j+1-i,i),LDA-1, XTOP, XBOTTM )
*
* SB: (lower triangle)
*
* . . . . . .
* A(1,i),LDA-1, XTOP, XBOTTM )
*
* Arguments
* =========
*
* LROWS - LOGICAL
* If .TRUE., then CLAROT will rotate two rows. If .FALSE.,
* then it will rotate two columns.
* Not modified.
*
* LLEFT - LOGICAL
* If .TRUE., then XLEFT will be used instead of the
* corresponding element of A for the first element in the
* second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.)
* If .FALSE., then the corresponding element of A will be
* used.
* Not modified.
*
* LRIGHT - LOGICAL
* If .TRUE., then XRIGHT will be used instead of the
* corresponding element of A for the last element in the
* first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If
* .FALSE., then the corresponding element of A will be used.
* Not modified.
*
* NL - INTEGER
* The length of the rows (if LROWS=.TRUE.) or columns (if
* LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are
* used, the columns/rows they are in should be included in
* NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at
* least 2. The number of rows/columns to be rotated
* exclusive of those involving XLEFT and/or XRIGHT may
* not be negative, i.e., NL minus how many of LLEFT and
* LRIGHT are .TRUE. must be at least zero; if not, XERBLA
* will be called.
* Not modified.
*
* C, S - COMPLEX
* Specify the Givens rotation to be applied. If LROWS is
* true, then the matrix ( c s )
* ( _ _ )
* (-s c ) is applied from the left;
* if false, then the transpose (not conjugated) thereof is
* applied from the right. Note that in contrast to the
* output of CROTG or to most versions of CROT, both C and S
* are complex. For a Givens rotation, |C|**2 + |S|**2 should
* be 1, but this is not checked.
* Not modified.
*
* A - COMPLEX array.
* The array containing the rows/columns to be rotated. The
* first element of A should be the upper left element to
* be rotated.
* Read and modified.
*
* LDA - INTEGER
* The "effective" leading dimension of A. If A contains
* a matrix stored in GE, HE, or SY format, then this is just
* the leading dimension of A as dimensioned in the calling
* routine. If A contains a matrix stored in band (GB, HB, or
* SB) format, then this should be *one less* than the leading
* dimension used in the calling routine. Thus, if A were
* dimensioned A(LDA,*) in CLAROT, then A(1,j) would be the
* j-th element in the first of the two rows to be rotated,
* and A(2,j) would be the j-th in the second, regardless of
* how the array may be stored in the calling routine. [A
* cannot, however, actually be dimensioned thus, since for
* band format, the row number may exceed LDA, which is not
* legal FORTRAN.]
* If LROWS=.TRUE., then LDA must be at least 1, otherwise
* it must be at least NL minus the number of .TRUE. values
* in XLEFT and XRIGHT.
* Not modified.
*
* XLEFT - COMPLEX
* If LLEFT is .TRUE., then XLEFT will be used and modified
* instead of A(2,1) (if LROWS=.TRUE.) or A(1,2)
* (if LROWS=.FALSE.).
* Read and modified.
*
* XRIGHT - COMPLEX
* If LRIGHT is .TRUE., then XRIGHT will be used and modified
* instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1)
* (if LROWS=.FALSE.).
* Read and modified.
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER IINC, INEXT, IX, IY, IYT, J, NT
COMPLEX TEMPX
* ..
* .. Local Arrays ..
COMPLEX XT( 2 ), YT( 2 )
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
* Set up indices, arrays for ends
*
IF( LROWS ) THEN
IINC = LDA
INEXT = 1
ELSE
IINC = 1
INEXT = LDA
END IF
*
IF( LLEFT ) THEN
NT = 1
IX = 1 + IINC
IY = 2 + LDA
XT( 1 ) = A( 1 )
YT( 1 ) = XLEFT
ELSE
NT = 0
IX = 1
IY = 1 + INEXT
END IF
*
IF( LRIGHT ) THEN
IYT = 1 + INEXT + ( NL-1 )*IINC
NT = NT + 1
XT( NT ) = XRIGHT
YT( NT ) = A( IYT )
END IF
*
* Check for errors
*
IF( NL.LT.NT ) THEN
CALL XERBLA( 'CLAROT', 4 )
RETURN
END IF
IF( LDA.LE.0 .OR. ( .NOT.LROWS .AND. LDA.LT.NL-NT ) ) THEN
CALL XERBLA( 'CLAROT', 8 )
RETURN
END IF
*
* Rotate
*
* CROT( NL-NT, A(IX),IINC, A(IY),IINC, C, S ) with complex C, S
*
DO 10 J = 0, NL - NT - 1
TEMPX = C*A( IX+J*IINC ) + S*A( IY+J*IINC )
A( IY+J*IINC ) = -CONJG( S )*A( IX+J*IINC ) +
$ CONJG( C )*A( IY+J*IINC )
A( IX+J*IINC ) = TEMPX
10 CONTINUE
*
* CROT( NT, XT,1, YT,1, C, S ) with complex C, S
*
DO 20 J = 1, NT
TEMPX = C*XT( J ) + S*YT( J )
YT( J ) = -CONJG( S )*XT( J ) + CONJG( C )*YT( J )
XT( J ) = TEMPX
20 CONTINUE
*
* Stuff values back into XLEFT, XRIGHT, etc.
*
IF( LLEFT ) THEN
A( 1 ) = XT( 1 )
XLEFT = YT( 1 )
END IF
*
IF( LRIGHT ) THEN
XRIGHT = XT( NT )
A( IYT ) = YT( NT )
END IF
*
RETURN
*
* End of CLAROT
*
END
| gpl-2.0 |
sargas/scipy | scipy/interpolate/fitpack/fprppo.f | 148 | 1543 | subroutine fprppo(nu,nv,if1,if2,cosi,ratio,c,f,ncoff)
c given the coefficients of a constrained bicubic spline, as determined
c in subroutine fppola, subroutine fprppo calculates the coefficients
c in the standard b-spline representation of bicubic splines.
c ..
c ..scalar arguments..
real*8 ratio
integer nu,nv,if1,if2,ncoff
c ..array arguments
real*8 c(ncoff),f(ncoff),cosi(5,nv)
c ..local scalars..
integer i,iopt,ii,j,k,l,nu4,nvv
c ..
nu4 = nu-4
nvv = nv-7
iopt = if1+1
do 10 i=1,ncoff
f(i) = 0.
10 continue
i = 0
do 120 l=1,nu4
ii = i
if(l.gt.iopt) go to 80
go to (20,40,60),l
20 do 30 k=1,nvv
i = i+1
f(i) = c(1)
30 continue
j = 1
go to 100
40 do 50 k=1,nvv
i = i+1
f(i) = c(1)+c(2)*cosi(1,k)+c(3)*cosi(2,k)
50 continue
j = 3
go to 100
60 do 70 k=1,nvv
i = i+1
f(i) = c(1)+ratio*(c(2)*cosi(1,k)+c(3)*cosi(2,k))+
* c(4)*cosi(3,k)+c(5)*cosi(4,k)+c(6)*cosi(5,k)
70 continue
j = 6
go to 100
80 if(l.eq.nu4 .and. if2.ne.0) go to 120
do 90 k=1,nvv
i = i+1
j = j+1
f(i) = c(j)
90 continue
100 do 110 k=1,3
ii = ii+1
i = i+1
f(i) = f(ii)
110 continue
120 continue
do 130 i=1,ncoff
c(i) = f(i)
130 continue
return
end
| bsd-3-clause |
thewtex/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/eispack/reduc.f | 41 | 3555 | subroutine reduc(nm,n,a,b,dl,ierr)
c
integer i,j,k,n,i1,j1,nm,nn,ierr
double precision a(nm,n),b(nm,n),dl(n)
double precision x,y
c
c this subroutine is a translation of the algol procedure reduc1,
c num. math. 11, 99-110(1968) by martin and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 303-314(1971).
c
c this subroutine reduces the generalized symmetric eigenproblem
c ax=(lambda)bx, where b is positive definite, to the standard
c symmetric eigenproblem using the cholesky factorization of b.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrices a and b. if the cholesky
c factor l of b is already available, n should be prefixed
c with a minus sign.
c
c a and b contain the real symmetric input matrices. only the
c full upper triangles of the matrices need be supplied. if
c n is negative, the strict lower triangle of b contains,
c instead, the strict lower triangle of its cholesky factor l.
c
c dl contains, if n is negative, the diagonal elements of l.
c
c on output
c
c a contains in its full lower triangle the full lower triangle
c of the symmetric matrix derived from the reduction to the
c standard form. the strict upper triangle of a is unaltered.
c
c b contains in its strict lower triangle the strict lower
c triangle of its cholesky factor l. the full upper
c triangle of b is unaltered.
c
c dl contains the diagonal elements of l.
c
c ierr is set to
c zero for normal return,
c 7*n+1 if b is not positive definite.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
ierr = 0
nn = iabs(n)
if (n .lt. 0) go to 100
c .......... form l in the arrays b and dl ..........
do 80 i = 1, n
i1 = i - 1
c
do 80 j = i, n
x = b(i,j)
if (i .eq. 1) go to 40
c
do 20 k = 1, i1
20 x = x - b(i,k) * b(j,k)
c
40 if (j .ne. i) go to 60
if (x .le. 0.0d0) go to 1000
y = dsqrt(x)
dl(i) = y
go to 80
60 b(j,i) = x / y
80 continue
c .......... form the transpose of the upper triangle of inv(l)*a
c in the lower triangle of the array a ..........
100 do 200 i = 1, nn
i1 = i - 1
y = dl(i)
c
do 200 j = i, nn
x = a(i,j)
if (i .eq. 1) go to 180
c
do 160 k = 1, i1
160 x = x - b(i,k) * a(j,k)
c
180 a(j,i) = x / y
200 continue
c .......... pre-multiply by inv(l) and overwrite ..........
do 300 j = 1, nn
j1 = j - 1
c
do 300 i = j, nn
x = a(i,j)
if (i .eq. j) go to 240
i1 = i - 1
c
do 220 k = j, i1
220 x = x - a(k,j) * b(i,k)
c
240 if (j .eq. 1) go to 280
c
do 260 k = 1, j1
260 x = x - a(j,k) * b(i,k)
c
280 a(i,j) = x / dl(i)
300 continue
c
go to 1001
c .......... set error -- b is not positive definite ..........
1000 ierr = 7 * n + 1
1001 return
end
| apache-2.0 |
apollos/Quantum-ESPRESSO | PHonon/PH/addusdbec.f90 | 5 | 3393 | !
! Copyright (C) 2001-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------
subroutine addusdbec (ik, wgt, psi, dbecsum)
!----------------------------------------------------------------------
!
! This routine adds to dbecsum the contribution of this
! k point. It implements Eq. B15 of PRB 64, 235118 (2001).
!
USE kinds, only : DP
USE ions_base, ONLY : nat, ityp, ntyp => nsp
USE becmod, ONLY : calbec
USE wvfct, only: npw, npwx, nbnd
USE uspp, only: nkb, vkb, okvan, ijtoh
USE uspp_param, only: upf, nh, nhm
USE phus, ONLY : becp1
USE qpoint, ONLY : npwq, ikks
USE control_ph, ONLY : nbnd_occ
!
USE mp_bands, ONLY : intra_bgrp_comm
!
implicit none
!
! the dummy variables
!
complex(DP) :: dbecsum (nhm*(nhm+1)/2, nat), psi(npwx,nbnd)
! inp/out: the sum kv of bec *
! input : contains delta psi
integer :: ik
! input: the k point
real(DP) :: wgt
! input: the weight of this k point
!
! here the local variables
!
integer :: na, nt, ih, jh, ibnd, ikk, ikb, jkb, ijh, startb, &
lastb, ijkb0
! counter on atoms
! counter on atomic type
! counter on solid beta functions
! counter on solid beta functions
! counter on the bands
! the real k point
! counter on solid becp
! counter on solid becp
! composite index for dbecsum
! divide among processors the sum
! auxiliary variable for counting
complex(DP), allocatable :: dbecq (:,:)
! the change of becq
if (.not.okvan) return
call start_clock ('addusdbec')
allocate (dbecq( nkb, nbnd))
ikk = ikks(ik)
!
! First compute the product of psi and vkb
!
call calbec (npwq, vkb, psi, dbecq)
!
! And then we add the product to becsum
!
! Band parallelization: each processor takes care of its slice of bands
!
call divide (intra_bgrp_comm, nbnd_occ (ikk), startb, lastb)
!
ijkb0 = 0
do nt = 1, ntyp
if (upf(nt)%tvanp ) then
do na = 1, nat
if (ityp (na) .eq.nt) then
!
! And qgmq and becp and dbecq
!
do ih = 1, nh(nt)
ikb = ijkb0 + ih
ijh=ijtoh(ih,ih,nt)
do ibnd = startb, lastb
dbecsum (ijh, na) = dbecsum (ijh, na) + &
wgt * ( CONJG(becp1(ik)%k(ikb,ibnd)) * dbecq(ikb,ibnd) )
enddo
do jh = ih + 1, nh (nt)
ijh=ijtoh(ih,jh,nt)
jkb = ijkb0 + jh
do ibnd = startb, lastb
dbecsum (ijh, na) = dbecsum (ijh, na) + &
wgt*( CONJG(becp1(ik)%k(ikb,ibnd))*dbecq(jkb,ibnd) + &
CONJG(becp1(ik)%k(jkb,ibnd))*dbecq(ikb,ibnd) )
enddo
ijh = ijh + 1
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
else
do na = 1, nat
if (ityp (na) .eq.nt) ijkb0 = ijkb0 + nh (nt)
enddo
endif
enddo
!
deallocate (dbecq)
call stop_clock ('addusdbec')
return
end subroutine addusdbec
| gpl-2.0 |
xianyi/OpenBLAS | lapack-netlib/SRC/dlasv2.f | 4 | 8428 | *> \brief \b DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASV2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasv2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasv2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasv2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASV2 computes the singular value decomposition of a 2-by-2
*> triangular matrix
*> [ F G ]
*> [ 0 H ].
*> On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
*> smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
*> right singular vectors for abs(SSMAX), giving the decomposition
*>
*> [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
*> [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] F
*> \verbatim
*> F is DOUBLE PRECISION
*> The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] G
*> \verbatim
*> G is DOUBLE PRECISION
*> The (1,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is DOUBLE PRECISION
*> The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] SSMIN
*> \verbatim
*> SSMIN is DOUBLE PRECISION
*> abs(SSMIN) is the smaller singular value.
*> \endverbatim
*>
*> \param[out] SSMAX
*> \verbatim
*> SSMAX is DOUBLE PRECISION
*> abs(SSMAX) is the larger singular value.
*> \endverbatim
*>
*> \param[out] SNL
*> \verbatim
*> SNL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[out] CSL
*> \verbatim
*> CSL is DOUBLE PRECISION
*> The vector (CSL, SNL) is a unit left singular vector for the
*> singular value abs(SSMAX).
*> \endverbatim
*>
*> \param[out] SNR
*> \verbatim
*> SNR is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[out] CSR
*> \verbatim
*> CSR is DOUBLE PRECISION
*> The vector (CSR, SNR) is a unit right singular vector for the
*> singular value abs(SSMAX).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Any input parameter may be aliased with any output parameter.
*>
*> Barring over/underflow and assuming a guard digit in subtraction, all
*> output quantities are correct to within a few units in the last
*> place (ulps).
*>
*> In IEEE arithmetic, the code works correctly if one matrix element is
*> infinite.
*>
*> Overflow will not occur unless the largest singular value itself
*> overflows or is within a few ulps of overflow. (On machines with
*> partial overflow, like the Cray, overflow may occur if the largest
*> singular value is within a factor of 2 of overflow.)
*>
*> Underflow is harmless if underflow is gradual. Otherwise, results
*> may correspond to a matrix modified by perturbations of size near
*> the underflow threshold.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWO
PARAMETER ( TWO = 2.0D0 )
DOUBLE PRECISION FOUR
PARAMETER ( FOUR = 4.0D0 )
* ..
* .. Local Scalars ..
LOGICAL GASMAL, SWAP
INTEGER PMAX
DOUBLE PRECISION A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
$ MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Executable Statements ..
*
FT = F
FA = ABS( FT )
HT = H
HA = ABS( H )
*
* PMAX points to the maximum absolute element of matrix
* PMAX = 1 if F largest in absolute values
* PMAX = 2 if G largest in absolute values
* PMAX = 3 if H largest in absolute values
*
PMAX = 1
SWAP = ( HA.GT.FA )
IF( SWAP ) THEN
PMAX = 3
TEMP = FT
FT = HT
HT = TEMP
TEMP = FA
FA = HA
HA = TEMP
*
* Now FA .ge. HA
*
END IF
GT = G
GA = ABS( GT )
IF( GA.EQ.ZERO ) THEN
*
* Diagonal matrix
*
SSMIN = HA
SSMAX = FA
CLT = ONE
CRT = ONE
SLT = ZERO
SRT = ZERO
ELSE
GASMAL = .TRUE.
IF( GA.GT.FA ) THEN
PMAX = 2
IF( ( FA / GA ).LT.DLAMCH( 'EPS' ) ) THEN
*
* Case of very large GA
*
GASMAL = .FALSE.
SSMAX = GA
IF( HA.GT.ONE ) THEN
SSMIN = FA / ( GA / HA )
ELSE
SSMIN = ( FA / GA )*HA
END IF
CLT = ONE
SLT = HT / GT
SRT = ONE
CRT = FT / GT
END IF
END IF
IF( GASMAL ) THEN
*
* Normal case
*
D = FA - HA
IF( D.EQ.FA ) THEN
*
* Copes with infinite F or H
*
L = ONE
ELSE
L = D / FA
END IF
*
* Note that 0 .le. L .le. 1
*
M = GT / FT
*
* Note that abs(M) .le. 1/macheps
*
T = TWO - L
*
* Note that T .ge. 1
*
MM = M*M
TT = T*T
S = SQRT( TT+MM )
*
* Note that 1 .le. S .le. 1 + 1/macheps
*
IF( L.EQ.ZERO ) THEN
R = ABS( M )
ELSE
R = SQRT( L*L+MM )
END IF
*
* Note that 0 .le. R .le. 1 + 1/macheps
*
A = HALF*( S+R )
*
* Note that 1 .le. A .le. 1 + abs(M)
*
SSMIN = HA / A
SSMAX = FA*A
IF( MM.EQ.ZERO ) THEN
*
* Note that M is very tiny
*
IF( L.EQ.ZERO ) THEN
T = SIGN( TWO, FT )*SIGN( ONE, GT )
ELSE
T = GT / SIGN( D, FT ) + M / T
END IF
ELSE
T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A )
END IF
L = SQRT( T*T+FOUR )
CRT = TWO / L
SRT = T / L
CLT = ( CRT+SRT*M ) / A
SLT = ( HT / FT )*SRT / A
END IF
END IF
IF( SWAP ) THEN
CSL = SRT
SNL = CRT
CSR = SLT
SNR = CLT
ELSE
CSL = CLT
SNL = SLT
CSR = CRT
SNR = SRT
END IF
*
* Correct signs of SSMAX and SSMIN
*
IF( PMAX.EQ.1 )
$ TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
IF( PMAX.EQ.2 )
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
IF( PMAX.EQ.3 )
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
SSMAX = SIGN( SSMAX, TSIGN )
SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
RETURN
*
* End of DLASV2
*
END
| bsd-3-clause |
xianyi/OpenBLAS | lapack-netlib/SRC/dgges3.f | 1 | 22639 | *> \brief <b> DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGGES3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
* SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
* LDVSR, WORK, LWORK, BWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBVSL, JOBVSR, SORT
* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * )
* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
* $ VSR( LDVSR, * ), WORK( * )
* ..
* .. Function Arguments ..
* LOGICAL SELCTG
* EXTERNAL SELCTG
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
*> the generalized eigenvalues, the generalized real Schur form (S,T),
*> optionally, the left and/or right matrices of Schur vectors (VSL and
*> VSR). This gives the generalized Schur factorization
*>
*> (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
*>
*> Optionally, it also orders the eigenvalues so that a selected cluster
*> of eigenvalues appears in the leading diagonal blocks of the upper
*> quasi-triangular matrix S and the upper triangular matrix T.The
*> leading columns of VSL and VSR then form an orthonormal basis for the
*> corresponding left and right eigenspaces (deflating subspaces).
*>
*> (If only the generalized eigenvalues are needed, use the driver
*> DGGEV instead, which is faster.)
*>
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
*> usually represented as the pair (alpha,beta), as there is a
*> reasonable interpretation for beta=0 or both being zero.
*>
*> A pair of matrices (S,T) is in generalized real Schur form if T is
*> upper triangular with non-negative diagonal and S is block upper
*> triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
*> to real generalized eigenvalues, while 2-by-2 blocks of S will be
*> "standardized" by making the corresponding elements of T have the
*> form:
*> [ a 0 ]
*> [ 0 b ]
*>
*> and the pair of corresponding 2-by-2 blocks in S and T will have a
*> complex conjugate pair of generalized eigenvalues.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBVSL
*> \verbatim
*> JOBVSL is CHARACTER*1
*> = 'N': do not compute the left Schur vectors;
*> = 'V': compute the left Schur vectors.
*> \endverbatim
*>
*> \param[in] JOBVSR
*> \verbatim
*> JOBVSR is CHARACTER*1
*> = 'N': do not compute the right Schur vectors;
*> = 'V': compute the right Schur vectors.
*> \endverbatim
*>
*> \param[in] SORT
*> \verbatim
*> SORT is CHARACTER*1
*> Specifies whether or not to order the eigenvalues on the
*> diagonal of the generalized Schur form.
*> = 'N': Eigenvalues are not ordered;
*> = 'S': Eigenvalues are ordered (see SELCTG);
*> \endverbatim
*>
*> \param[in] SELCTG
*> \verbatim
*> SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
*> SELCTG must be declared EXTERNAL in the calling subroutine.
*> If SORT = 'N', SELCTG is not referenced.
*> If SORT = 'S', SELCTG is used to select eigenvalues to sort
*> to the top left of the Schur form.
*> An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
*> SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
*> one of a complex conjugate pair of eigenvalues is selected,
*> then both complex eigenvalues are selected.
*>
*> Note that in the ill-conditioned case, a selected complex
*> eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
*> BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
*> in this case.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, VSL, and VSR. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> On entry, the first of the pair of matrices.
*> On exit, A has been overwritten by its generalized Schur
*> form S.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> On entry, the second of the pair of matrices.
*> On exit, B has been overwritten by its generalized Schur
*> form T.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] SDIM
*> \verbatim
*> SDIM is INTEGER
*> If SORT = 'N', SDIM = 0.
*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
*> for which SELCTG is true. (Complex conjugate pairs for which
*> SELCTG is true for either eigenvalue count as 2.)
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*> ALPHAR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*> ALPHAI is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
*> and BETA(j),j=1,...,N are the diagonals of the complex Schur
*> form (S,T) that would result if the 2-by-2 diagonal blocks of
*> the real Schur form of (A,B) were further reduced to
*> triangular form using 2-by-2 complex unitary transformations.
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*> positive, then the j-th and (j+1)-st eigenvalues are a
*> complex conjugate pair, with ALPHAI(j+1) negative.
*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio.
*> However, ALPHAR and ALPHAI will be always less than and
*> usually comparable with norm(A) in magnitude, and BETA always
*> less than and usually comparable with norm(B).
*> \endverbatim
*>
*> \param[out] VSL
*> \verbatim
*> VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
*> If JOBVSL = 'V', VSL will contain the left Schur vectors.
*> Not referenced if JOBVSL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSL
*> \verbatim
*> LDVSL is INTEGER
*> The leading dimension of the matrix VSL. LDVSL >=1, and
*> if JOBVSL = 'V', LDVSL >= N.
*> \endverbatim
*>
*> \param[out] VSR
*> \verbatim
*> VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
*> If JOBVSR = 'V', VSR will contain the right Schur vectors.
*> Not referenced if JOBVSR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSR
*> \verbatim
*> LDVSR is INTEGER
*> The leading dimension of the matrix VSR. LDVSR >= 1, and
*> if JOBVSR = 'V', LDVSR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (N)
*> Not referenced if SORT = 'N'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> = 1,...,N:
*> The QZ iteration failed. (A,B) are not in Schur
*> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
*> be correct for j=INFO+1,...,N.
*> > N: =N+1: other than QZ iteration failed in DLAQZ0.
*> =N+2: after reordering, roundoff changed values of
*> some complex eigenvalues so that leading
*> eigenvalues in the Generalized Schur form no
*> longer satisfy SELCTG=.TRUE. This could also
*> be caused due to scaling.
*> =N+3: reordering failed in DTGSEN.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleGEeigen
*
* =====================================================================
SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
$ LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
$ VSR, LDVSR, WORK, LWORK, BWORK, INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER JOBVSL, JOBVSR, SORT
INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
$ VSR( LDVSR, * ), WORK( * )
* ..
* .. Function Arguments ..
LOGICAL SELCTG
EXTERNAL SELCTG
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
$ LQUERY, LST2SL, WANTST
INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
$ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
$ PVSR, SAFMAX, SAFMIN, SMLNUM
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 )
DOUBLE PRECISION DIF( 2 )
* ..
* .. External Subroutines ..
EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLABAD,
$ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, DLAMCH, DLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVSL, 'N' ) ) THEN
IJOBVL = 1
ILVSL = .FALSE.
ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
IJOBVL = 2
ILVSL = .TRUE.
ELSE
IJOBVL = -1
ILVSL = .FALSE.
END IF
*
IF( LSAME( JOBVSR, 'N' ) ) THEN
IJOBVR = 1
ILVSR = .FALSE.
ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
IJOBVR = 2
ILVSR = .TRUE.
ELSE
IJOBVR = -1
ILVSR = .FALSE.
END IF
*
WANTST = LSAME( SORT, 'S' )
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
INFO = -15
ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
INFO = -17
ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
*
* Compute workspace
*
IF( INFO.EQ.0 ) THEN
CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
LWKOPT = MAX( 6*N+16, 3*N+INT( WORK ( 1 ) ) )
CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
$ -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
IF( ILVSL ) THEN
CALL DORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
END IF
CALL DGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
$ LDVSL, VSR, LDVSR, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
CALL DLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
$ WORK, -1, 0, IERR )
LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
IF( WANTST ) THEN
CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
$ SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1,
$ IERR )
LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
END IF
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGES3 ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
SDIM = 0
RETURN
END IF
*
* Get machine constants
*
EPS = DLAMCH( 'P' )
SAFMIN = DLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
SMLNUM = SQRT( SAFMIN ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
ILASCL = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ANRMTO = SMLNUM
ILASCL = .TRUE.
ELSE IF( ANRM.GT.BIGNUM ) THEN
ANRMTO = BIGNUM
ILASCL = .TRUE.
END IF
IF( ILASCL )
$ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
* Scale B if max element outside range [SMLNUM,BIGNUM]
*
BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
ILBSCL = .FALSE.
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
BNRMTO = SMLNUM
ILBSCL = .TRUE.
ELSE IF( BNRM.GT.BIGNUM ) THEN
BNRMTO = BIGNUM
ILBSCL = .TRUE.
END IF
IF( ILBSCL )
$ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
* Permute the matrix to make it more nearly triangular
*
ILEFT = 1
IRIGHT = N + 1
IWRK = IRIGHT + N
CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), WORK( IWRK ), IERR )
*
* Reduce B to triangular form (QR decomposition of B)
*
IROWS = IHI + 1 - ILO
ICOLS = N + 1 - ILO
ITAU = IWRK
IWRK = ITAU + IROWS
CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
*
* Apply the orthogonal transformation to matrix A
*
CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
$ LWORK+1-IWRK, IERR )
*
* Initialize VSL
*
IF( ILVSL ) THEN
CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
IF( IROWS.GT.1 ) THEN
CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VSL( ILO+1, ILO ), LDVSL )
END IF
CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
END IF
*
* Initialize VSR
*
IF( ILVSR )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
*
* Reduce to generalized Hessenberg form
*
CALL DGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
$ LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK,
$ IERR )
*
* Perform QZ algorithm, computing Schur vectors if desired
*
IWRK = ITAU
CALL DLAQZ0( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
$ WORK( IWRK ), LWORK+1-IWRK, 0, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
INFO = IERR
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
INFO = IERR - N
ELSE
INFO = N + 1
END IF
GO TO 50
END IF
*
* Sort eigenvalues ALPHA/BETA if desired
*
SDIM = 0
IF( WANTST ) THEN
*
* Undo scaling on eigenvalues before SELCTGing
*
IF( ILASCL ) THEN
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
$ IERR )
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
$ IERR )
END IF
IF( ILBSCL )
$ CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
*
* Select eigenvalues
*
DO 10 I = 1, N
BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
10 CONTINUE
*
CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
$ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
$ PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
$ IERR )
IF( IERR.EQ.1 )
$ INFO = N + 3
*
END IF
*
* Apply back-permutation to VSL and VSR
*
IF( ILVSL )
$ CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VSL, LDVSL, IERR )
*
IF( ILVSR )
$ CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VSR, LDVSR, IERR )
*
* Check if unscaling would cause over/underflow, if so, rescale
* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
*
IF( ILASCL ) THEN
DO 20 I = 1, N
IF( ALPHAI( I ).NE.ZERO ) THEN
IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
$ ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
BETA( I ) = BETA( I )*WORK( 1 )
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
$ ( ANRMTO / ANRM ) .OR.
$ ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
$ THEN
WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
BETA( I ) = BETA( I )*WORK( 1 )
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
END IF
END IF
20 CONTINUE
END IF
*
IF( ILBSCL ) THEN
DO 30 I = 1, N
IF( ALPHAI( I ).NE.ZERO ) THEN
IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
$ ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
BETA( I ) = BETA( I )*WORK( 1 )
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
END IF
END IF
30 CONTINUE
END IF
*
* Undo scaling
*
IF( ILASCL ) THEN
CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
END IF
*
IF( ILBSCL ) THEN
CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
END IF
*
IF( WANTST ) THEN
*
* Check if reordering is correct
*
LASTSL = .TRUE.
LST2SL = .TRUE.
SDIM = 0
IP = 0
DO 40 I = 1, N
CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
IF( ALPHAI( I ).EQ.ZERO ) THEN
IF( CURSL )
$ SDIM = SDIM + 1
IP = 0
IF( CURSL .AND. .NOT.LASTSL )
$ INFO = N + 2
ELSE
IF( IP.EQ.1 ) THEN
*
* Last eigenvalue of conjugate pair
*
CURSL = CURSL .OR. LASTSL
LASTSL = CURSL
IF( CURSL )
$ SDIM = SDIM + 2
IP = -1
IF( CURSL .AND. .NOT.LST2SL )
$ INFO = N + 2
ELSE
*
* First eigenvalue of conjugate pair
*
IP = 1
END IF
END IF
LST2SL = LASTSL
LASTSL = CURSL
40 CONTINUE
*
END IF
*
50 CONTINUE
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of DGGES3
*
END
| bsd-3-clause |
apollos/Quantum-ESPRESSO | lapack-3.2/SRC/chetrf.f | 1 | 8886 | SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CHETRF computes the factorization of a complex Hermitian matrix A
* using the Bunch-Kaufman diagonal pivoting method. The form of the
* factorization is
*
* A = U*D*U**H or A = L*D*L**H
*
* where U (or L) is a product of permutation and unit upper (lower)
* triangular matrices, and D is Hermitian and block diagonal with
* 1-by-1 and 2-by-2 diagonal blocks.
*
* This is the blocked version of the algorithm, calling Level 3 BLAS.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading
* N-by-N upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
*
* On exit, the block diagonal matrix D and the multipliers used
* to obtain the factor U or L (see below for further details).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (output) INTEGER array, dimension (N)
* Details of the interchanges and the block structure of D.
* If IPIV(k) > 0, then rows and columns k and IPIV(k) were
* interchanged and D(k,k) is a 1-by-1 diagonal block.
* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of WORK. LWORK >=1. For best performance
* LWORK >= N*NB, where NB is the block size returned by ILAENV.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, D(i,i) is exactly zero. The factorization
* has been completed, but the block diagonal matrix D is
* exactly singular, and division by zero will occur if it
* is used to solve a system of equations.
*
* Further Details
* ===============
*
* If UPLO = 'U', then A = U*D*U', where
* U = P(n)*U(n)* ... *P(k)U(k)* ...,
* i.e., U is a product of terms P(k)*U(k), where k decreases from n to
* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
* that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
* ( I v 0 ) k-s
* U(k) = ( 0 I 0 ) s
* ( 0 0 I ) n-k
* k-s s n-k
*
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
* and A(k,k), and v overwrites A(1:k-2,k-1:k).
*
* If UPLO = 'L', then A = L*D*L', where
* L = P(1)*L(1)* ... *P(k)*L(k)* ...,
* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
* that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
* ( I 0 0 ) k-1
* L(k) = ( 0 I 0 ) s
* ( 0 v I ) n-k-s+1
* k-1 s n-k-s+1
*
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CHETF2, CLAHEF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
*
IF( INFO.EQ.0 ) THEN
*
* Determine the block size
*
NB = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHETRF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
NB = MAX( LWORK / LDWORK, 1 )
NBMIN = MAX( 2, ILAENV( 2, 'CHETRF', UPLO, N, -1, -1, -1 ) )
END IF
ELSE
IWS = 1
END IF
IF( NB.LT.NBMIN )
$ NB = N
*
IF( UPPER ) THEN
*
* Factorize A as U*D*U' using the upper triangle of A
*
* K is the main loop index, decreasing from N to 1 in steps of
* KB, where KB is the number of columns factorized by CLAHEF;
* KB is either NB or NB-1, or K for the last block
*
K = N
10 CONTINUE
*
* If K < 1, exit from loop
*
IF( K.LT.1 )
$ GO TO 40
*
IF( K.GT.NB ) THEN
*
* Factorize columns k-kb+1:k of A and use blocked code to
* update columns 1:k-kb
*
CALL CLAHEF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
ELSE
*
* Use unblocked code to factorize columns 1:k of A
*
CALL CHETF2( UPLO, K, A, LDA, IPIV, IINFO )
KB = K
END IF
*
* Set INFO on the first occurrence of a zero pivot
*
IF( INFO.EQ.0 .AND. IINFO.GT.0 )
$ INFO = IINFO
*
* Decrease K and return to the start of the main loop
*
K = K - KB
GO TO 10
*
ELSE
*
* Factorize A as L*D*L' using the lower triangle of A
*
* K is the main loop index, increasing from 1 to N in steps of
* KB, where KB is the number of columns factorized by CLAHEF;
* KB is either NB or NB-1, or N-K+1 for the last block
*
K = 1
20 CONTINUE
*
* If K > N, exit from loop
*
IF( K.GT.N )
$ GO TO 40
*
IF( K.LE.N-NB ) THEN
*
* Factorize columns k:k+kb-1 of A and use blocked code to
* update columns k+kb:n
*
CALL CLAHEF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
$ WORK, N, IINFO )
ELSE
*
* Use unblocked code to factorize columns k:n of A
*
CALL CHETF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
KB = N - K + 1
END IF
*
* Set INFO on the first occurrence of a zero pivot
*
IF( INFO.EQ.0 .AND. IINFO.GT.0 )
$ INFO = IINFO + K - 1
*
* Adjust IPIV
*
DO 30 J = K, K + KB - 1
IF( IPIV( J ).GT.0 ) THEN
IPIV( J ) = IPIV( J ) + K - 1
ELSE
IPIV( J ) = IPIV( J ) - K + 1
END IF
30 CONTINUE
*
* Increase K and return to the start of the main loop
*
K = K + KB
GO TO 20
*
END IF
*
40 CONTINUE
WORK( 1 ) = LWKOPT
RETURN
*
* End of CHETRF
*
END
| gpl-2.0 |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
- Downloads last month
- 9