arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2305.09107
2023-05-16T02:12:57Z
Is a Video worth $n\times n$ Images? A Highly Efficient Approach to Transformer-based Video Question Answering
[ "Chenyang Lyu", "Tianbo Ji", "Yvette Graham", "Jennifer Foster" ]
Conventional Transformer-based Video Question Answering (VideoQA) approaches generally encode frames independently through one or more image encoders followed by interaction between frames and question. However, such schema would incur significant memory use and inevitably slow down the training and inference speed. In this work, we present a highly efficient approach for VideoQA based on existing vision-language pre-trained models where we concatenate video frames to a $n\times n$ matrix and then convert it to one image. By doing so, we reduce the use of the image encoder from $n^{2}$ to $1$ while maintaining the temporal structure of the original video. Experimental results on MSRVTT and TrafficQA show that our proposed approach achieves state-of-the-art performance with nearly $4\times$ faster speed and only 30% memory use. We show that by integrating our approach into VideoQA systems we can achieve comparable, even superior, performance with a significant speed up for training and inference. We believe the proposed approach can facilitate VideoQA-related research by reducing the computational requirements for those who have limited access to budgets and resources. Our code will be made publicly available for research use.
[ "cs.CV", "cs.AI", "cs.CL", "cs.MM" ]
false
2305.09145
2023-05-16T03:51:34Z
Deep ReLU Networks Have Surprisingly Simple Polytopes
[ "Feng-Lei Fan", "Wei Huang", "Xiangru Zhong", "Lecheng Ruan", "Tieyong Zeng", "Huan Xiong", "Fei Wang" ]
A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization of polytopes. To upgrade the characterization to a new level, here we propose to study the shapes of polytopes via the number of simplices obtained by triangulating the polytope. Then, by computing and analyzing the histogram of simplices across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes theoretically can be rather diverse and complicated. This finding can be appreciated as a novel implicit bias. Next, we use nontrivial combinatorial derivation to theoretically explain why adding depth does not create a more complicated polytope by bounding the average number of faces of polytopes with a function of the dimensionality. Our results concretely reveal what kind of simple functions a network learns and its space partition property. Also, by characterizing the shape of polytopes, the number of simplices be a leverage for other problems, \textit{e.g.}, serving as a generic functional complexity measure to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.
[ "cs.LG", "cs.AI", "cs.CV", "cs.MM" ]
false
2305.09212
2023-05-16T06:41:25Z
Cross-Modal Global Interaction and Local Alignment for Audio-Visual Speech Recognition
[ "Yuchen Hu", "Ruizhe Li", "Chen Chen", "Heqing Zou", "Qiushi Zhu", "Eng Siong Chng" ]
Audio-visual speech recognition (AVSR) research has gained a great success recently by improving the noise-robustness of audio-only automatic speech recognition (ASR) with noise-invariant visual information. However, most existing AVSR approaches simply fuse the audio and visual features by concatenation, without explicit interactions to capture the deep correlations between them, which results in sub-optimal multimodal representations for downstream speech recognition task. In this paper, we propose a cross-modal global interaction and local alignment (GILA) approach for AVSR, which captures the deep audio-visual (A-V) correlations from both global and local perspectives. Specifically, we design a global interaction model to capture the A-V complementary relationship on modality level, as well as a local alignment approach to model the A-V temporal consistency on frame level. Such a holistic view of cross-modal correlations enable better multimodal representations for AVSR. Experiments on public benchmarks LRS3 and LRS2 show that our GILA outperforms the supervised learning state-of-the-art.
[ "eess.AS", "cs.CV", "cs.MM", "cs.SD" ]
false
2305.09275
2023-05-16T08:29:33Z
Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
[ "Hasan Abed Al Kader Hammoud", "Ameya Prabhu", "Ser-Nam Lim", "Philip H. S. Torr", "Adel Bibi", "Bernard Ghanem" ]
We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy, which measures the accuracy of the model on the immediate next few samples. However, we show that this metric is unreliable, as even vacuous blind classifiers, which do not use input images for prediction, can achieve unrealistically high online accuracy by exploiting spurious label correlations in the data stream. Our study reveals that existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information, suggesting that they unintentionally learn spurious label correlations. To address this issue, we propose a novel metric for measuring adaptation based on the accuracy on the near-future samples, where spurious correlations are removed. We benchmark existing OCL approaches using our proposed metric on large-scale datasets under various computational budgets and find that better generalization can be achieved by retaining and reusing past seen information. We believe that our proposed metric can aid in the development of truly adaptive OCL methods. We provide code to reproduce our results at https://github.com/drimpossible/EvalOCL.
[ "cs.LG", "cs.AI", "cs.CV" ]
false
2305.09276
2023-05-16T08:30:45Z
Noise robust neural network architecture
[ "Xiong Yunuo", "Xiong Hongwei" ]
In which we propose neural network architecture (dune neural network) for recognizing general noisy image without adding any artificial noise in the training data. By representing each free parameter of the network as an uncertainty interval, and applying a linear transformation to each input element, we show that the resulting architecture achieves decent noise robustness when faced with input data with white noise. We apply simple dune neural networks for MNIST dataset and demonstrate that even for very noisy input images which are hard for human to recognize, our approach achieved better test set accuracy than human without dataset augmentation. We also find that our method is robust for many other examples with various background patterns added.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.09302
2023-05-16T09:21:56Z
Pink-Eggs Dataset V1: A Step Toward Invasive Species Management Using Deep Learning Embedded Solutions
[ "Di Xu", "Yang Zhao", "Xiang Hao", "Xin Meng" ]
We introduce a novel dataset consisting of images depicting pink eggs that have been identified as Pomacea canaliculata eggs, accompanied by corresponding bounding box annotations. The purpose of this dataset is to aid researchers in the analysis of the spread of Pomacea canaliculata species by utilizing deep learning techniques, as well as supporting other investigative pursuits that require visual data pertaining to the eggs of Pomacea canaliculata. It is worth noting, however, that the identity of the eggs in question is not definitively established, as other species within the same taxonomic family have been observed to lay similar-looking eggs in regions of the Americas. Therefore, a crucial prerequisite to any decision regarding the elimination of these eggs would be to establish with certainty whether they are exclusively attributable to invasive Pomacea canaliculata or if other species are also involved. The dataset is available at https://www.kaggle.com/datasets/deeshenzhen/pinkeggs
[ "cs.CV", "cs.AI", "eess.AS" ]
false
2305.09327
2023-05-16T10:04:30Z
Improved Type III solar radio burst detection using congruent deep learning models
[ "Jeremiah Scully", "Ronan Flynn", "Peter Gallagher", "Eoin Carley", "Mark Daly" ]
Solar flares are energetic events in the solar atmosphere that are often linked with solar radio bursts (SRBs). SRBs are observed at metric to decametric wavelengths and are classified into five spectral classes (Type I--V) based on their signature in dynamic spectra. The automatic detection and classification of SRBs is a challenge due to their heterogeneous form. Near-realtime detection and classification of SRBs has become a necessity in recent years due to large data rates generated by advanced radio telescopes such as the LOw Frequency ARray (LOFAR). In this study, we implement congruent deep learning models to automatically detect and classify Type III SRBs. We generated simulated Type III SRBs, which were comparable to Type IIIs seen in real observations, using a deep learning method known as Generative Adversarial Network (GAN). This simulated data was combined with observations from LOFAR to produce a training set that was used to train an object detection model known as YOLOv2 (You Only Look Once). Using this congruent deep learning model system, we can accurately detect Type III SRBs at a mean Average Precision (mAP) value of 77.71%.
[ "astro-ph.SR", "astro-ph.IM", "cs.CV" ]
false
2305.09333
2023-05-16T10:15:44Z
Multi-modal Visual Understanding with Prompts for Semantic Information Disentanglement of Image
[ "Yuzhou Peng" ]
Multi-modal visual understanding of images with prompts involves using various visual and textual cues to enhance the semantic understanding of images. This approach combines both vision and language processing to generate more accurate predictions and recognition of images. By utilizing prompt-based techniques, models can learn to focus on certain features of an image to extract useful information for downstream tasks. Additionally, multi-modal understanding can improve upon single modality models by providing more robust representations of images. Overall, the combination of visual and textual information is a promising area of research for advancing image recognition and understanding. In this paper we will try an amount of prompt design methods and propose a new method for better extraction of semantic information
[ "cs.CV", "cs.AI", "cs.CL" ]
false
2305.09510
2023-05-16T15:03:20Z
Real-time Simultaneous Multi-Object 3D Shape Reconstruction, 6DoF Pose Estimation and Dense Grasp Prediction
[ "Shubham Agrawal", "Nikhil Chavan-Dafle", "Isaac Kasahara", "Selim Engin", "Jinwook Huh", "Volkan Isler" ]
Robotic manipulation systems operating in complex environments rely on perception systems that provide information about the geometry (pose and 3D shape) of the objects in the scene along with other semantic information such as object labels. This information is then used for choosing the feasible grasps on relevant objects. In this paper, we present a novel method to provide this geometric and semantic information of all objects in the scene as well as feasible grasps on those objects simultaneously. The main advantage of our method is its speed as it avoids sequential perception and grasp planning steps. With detailed quantitative analysis, we show that our method delivers competitive performance compared to the state-of-the-art dedicated methods for object shape, pose, and grasp predictions while providing fast inference at 30 frames per second speed.
[ "cs.RO", "cs.AI", "cs.CV", "cs.LG", "I.4.5; I.4.8; I.4.10; I.2.9; I.2.10; I.6.3" ]
false
2305.09564
2023-05-16T16:00:48Z
Image Reconstruction using Superpixel Clustering and Tensor Completion
[ "Maame G. Asante-Mensah", "Anh Huy Phan", "Salman Ahmadi-Asl", "Zaher Al Aghbari", "Andrzej Cichocki" ]
This paper presents a pixel selection method for compact image representation based on superpixel segmentation and tensor completion. Our method divides the image into several regions that capture important textures or semantics and selects a representative pixel from each region to store. We experiment with different criteria for choosing the representative pixel and find that the centroid pixel performs the best. We also propose two smooth tensor completion algorithms that can effectively reconstruct different types of images from the selected pixels. Our experiments show that our superpixel-based method achieves better results than uniform sampling for various missing ratios.
[ "cs.CV", "cs.NA", "math.NA" ]
false
2305.09610
2023-05-16T17:02:57Z
Concurrent Misclassification and Out-of-Distribution Detection for Semantic Segmentation via Energy-Based Normalizing Flow
[ "Denis Gudovskiy", "Tomoyuki Okuno", "Yohei Nakata" ]
Recent semantic segmentation models accurately classify test-time examples that are similar to a training dataset distribution. However, their discriminative closed-set approach is not robust in practical data setups with distributional shifts and out-of-distribution (OOD) classes. As a result, the predicted probabilities can be very imprecise when used as confidence scores at test time. To address this, we propose a generative model for concurrent in-distribution misclassification (IDM) and OOD detection that relies on a normalizing flow framework. The proposed flow-based detector with an energy-based inputs (FlowEneDet) can extend previously deployed segmentation models without their time-consuming retraining. Our FlowEneDet results in a low-complexity architecture with marginal increase in the memory footprint. FlowEneDet achieves promising results on Cityscapes, Cityscapes-C, FishyScapes and SegmentMeIfYouCan benchmarks in IDM/OOD detection when applied to pretrained DeepLabV3+ and SegFormer semantic segmentation models.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.09641
2023-05-16T17:42:45Z
FitMe: Deep Photorealistic 3D Morphable Model Avatars
[ "Alexandros Lattas", "Stylianos Moschoglou", "Stylianos Ploumpis", "Baris Gecer", "Jiankang Deng", "Stefanos Zafeiriou" ]
In this paper, we introduce FitMe, a facial reflectance model and a differentiable rendering optimization pipeline, that can be used to acquire high-fidelity renderable human avatars from single or multiple images. The model consists of a multi-modal style-based generator, that captures facial appearance in terms of diffuse and specular reflectance, and a PCA-based shape model. We employ a fast differentiable rendering process that can be used in an optimization pipeline, while also achieving photorealistic facial shading. Our optimization process accurately captures both the facial reflectance and shape in high-detail, by exploiting the expressivity of the style-based latent representation and of our shape model. FitMe achieves state-of-the-art reflectance acquisition and identity preservation on single "in-the-wild" facial images, while it produces impressive scan-like results, when given multiple unconstrained facial images pertaining to the same identity. In contrast with recent implicit avatar reconstructions, FitMe requires only one minute and produces relightable mesh and texture-based avatars, that can be used by end-user applications.
[ "cs.CV", "cs.GR", "cs.LG", "I.2.10; I.3.7; I.4.1" ]
true
2305.09736
2023-05-16T18:08:24Z
ADDSL: Hand Gesture Detection and Sign Language Recognition on Annotated Danish Sign Language
[ "Sanyam Jain" ]
For a long time, detecting hand gestures and recognizing them as letters or numbers has been a challenging task. This creates communication barriers for individuals with disabilities. This paper introduces a new dataset, the Annotated Dataset for Danish Sign Language (ADDSL). Annota-tions for the dataset were made using the open-source tool LabelImg in the YOLO format. Using this dataset, a one-stage ob-ject detector model (YOLOv5) was trained with the CSP-DarkNet53 backbone and YOLOv3 head to recognize letters (A-Z) and numbers (0-9) using only seven unique images per class (without augmen-tation). Five models were trained with 350 epochs, resulting in an average inference time of 9.02ms per image and a best accu-racy of 92% when compared to previous research. Our results show that modified model is efficient and more accurate than existing work in the same field. The code repository for our model is available at the GitHub repository https://github.com/s4nyam/pvt-addsl.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.09817
2023-05-16T21:46:28Z
A Method for Training-free Person Image Picture Generation
[ "Tianyu Chen" ]
The current state-of-the-art Diffusion model has demonstrated excellent results in generating images. However, the images are monotonous and are mostly the result of the distribution of images of people in the training set, making it challenging to generate multiple images for a fixed number of individuals. This problem can often only be solved by fine-tuning the training of the model. This means that each individual/animated character image must be trained if it is to be drawn, and the hardware and cost of this training is often beyond the reach of the average user, who accounts for the largest number of people. To solve this problem, the Character Image Feature Encoder model proposed in this paper enables the user to use the process by simply providing a picture of the character to make the image of the character in the generated image match the expectation. In addition, various details can be adjusted during the process using prompts. Unlike traditional Image-to-Image models, the Character Image Feature Encoder extracts only the relevant image features, rather than information about the model's composition or movements. In addition, the Character Image Feature Encoder can be adapted to different models after training. The proposed model can be conveniently incorporated into the Stable Diffusion generation process without modifying the model's ontology or used in combination with Stable Diffusion as a joint model.
[ "cs.CV", "cs.AI", "cs.GR", "cs.LG" ]
false
2305.09828
2023-05-16T22:12:25Z
Mimetic Initialization of Self-Attention Layers
[ "Asher Trockman", "J. Zico Kolter" ]
It is notoriously difficult to train Transformers on small datasets; typically, large pre-trained models are instead used as the starting point. We explore the weights of such pre-trained Transformers (particularly for vision) to attempt to find reasons for this discrepancy. Surprisingly, we find that simply initializing the weights of self-attention layers so that they "look" more like their pre-trained counterparts allows us to train vanilla Transformers faster and to higher final accuracies, particularly on vision tasks such as CIFAR-10 and ImageNet classification, where we see gains in accuracy of over 5% and 4%, respectively. Our initialization scheme is closed form, learning-free, and very simple: we set the product of the query and key weights to be approximately the identity, and the product of the value and projection weights to approximately the negative identity. As this mimics the patterns we saw in pre-trained Transformers, we call the technique "mimetic initialization".
[ "cs.CV", "cs.AI", "cs.LG", "stat.ML" ]
false
2305.15421
2023-05-16T17:28:06Z
Generative Adversarial Networks for Brain Images Synthesis: A Review
[ "Firoozeh Shomal Zadeh", "Sevda Molani", "Maysam Orouskhani", "Marziyeh Rezaei", "Mehrzad Shafiei", "Hossein Abbasi" ]
In medical imaging, image synthesis is the estimation process of one image (sequence, modality) from another image (sequence, modality). Since images with different modalities provide diverse biomarkers and capture various features, multi-modality imaging is crucial in medicine. While multi-screening is expensive, costly, and time-consuming to report by radiologists, image synthesis methods are capable of artificially generating missing modalities. Deep learning models can automatically capture and extract the high dimensional features. Especially, generative adversarial network (GAN) as one of the most popular generative-based deep learning methods, uses convolutional networks as generators, and estimated images are discriminated as true or false based on a discriminator network. This review provides brain image synthesis via GANs. We summarized the recent developments of GANs for cross-modality brain image synthesis including CT to PET, CT to MRI, MRI to PET, and vice versa.
[ "eess.IV", "cs.CV", "cs.LG", "68T07", "I.2.m" ]
false
2305.10450
2023-05-16T19:52:40Z
Understanding of Normal and Abnormal Hearts by Phase Space Analysis and Convolutional Neural Networks
[ "Bekir Yavuz Koc", "Taner Arsan", "Onder Pekcan" ]
Cardiac diseases are one of the leading mortality factors in modern, industrialized societies, which cause high expenses in public health systems. Due to high costs, developing analytical methods to improve cardiac diagnostics is essential. The heart's electric activity was first modeled using a set of nonlinear differential equations. Following this, variations of cardiac spectra originating from deterministic dynamics are investigated. Analyzing a normal human heart's power spectra offers His-Purkinje network, which possesses a fractal-like structure. Phase space trajectories are extracted from the time series electrocardiogram (ECG) graph with third-order derivate Taylor Series. Here in this study, phase space analysis and Convolutional Neural Networks (CNNs) method are applied to 44 records via the MIT-BIH database recorded with MLII. In order to increase accuracy, a straight line is drawn between the highest Q-R distance in the phase space images of the records. Binary CNN classification is used to determine healthy or unhealthy hearts. With a 90.90% accuracy rate, this model could classify records according to their heart status.
[ "eess.IV", "cs.CL", "cs.CV", "cs.LG", "cs.NE", "eess.SP", "68", "I.5.1" ]
false
2305.09137
2023-05-16T03:38:06Z
Pre-Training to Learn in Context
[ "Yuxian Gu", "Li Dong", "Furu Wei", "Minlie Huang" ]
In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context. To this end, we propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability by pre-training the model on a large collection of "intrinsic tasks" in the general plain-text corpus using the simple language modeling objective. PICL encourages the model to infer and perform tasks by conditioning on the contexts while maintaining task generalization of pre-trained models. We evaluate the in-context learning performance of the model trained with PICL on seven widely-used text classification datasets and the Super-NaturalInstrctions benchmark, which contains 100+ NLP tasks formulated to text generation. Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters. The code is publicly available at https://github.com/thu-coai/PICL.
[ "cs.CL" ]
true
2305.09154
2023-05-16T04:15:25Z
Progressive Translation: Improving Domain Robustness of Neural Machine Translation with Intermediate Sequences
[ "Chaojun Wang", "Yang Liu", "Wai Lam" ]
Previous studies show that intermediate supervision signals benefit various Natural Language Processing tasks. However, it is not clear whether there exist intermediate signals that benefit Neural Machine Translation (NMT). Borrowing techniques from Statistical Machine Translation, we propose intermediate signals which are intermediate sequences from the "source-like" structure to the "target-like" structure. Such intermediate sequences introduce an inductive bias that reflects a domain-agnostic principle of translation, which reduces spurious correlations that are harmful to out-of-domain generalisation. Furthermore, we introduce a full-permutation multi-task learning to alleviate the spurious causal relations from intermediate sequences to the target, which results from exposure bias. The Minimum Bayes Risk decoding algorithm is used to pick the best candidate translation from all permutations to further improve the performance. Experiments show that the introduced intermediate signals can effectively improve the domain robustness of NMT and reduces the amount of hallucinations on out-of-domain translation. Further analysis shows that our methods are especially promising in low-resource scenarios.
[ "cs.CL" ]
false
2305.09249
2023-05-16T07:56:19Z
xPQA: Cross-Lingual Product Question Answering across 12 Languages
[ "Xiaoyu Shen", "Akari Asai", "Bill Byrne", "Adrià de Gispert" ]
Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that (1) In-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task; (2) Candidate ranking often prefers runtime-translation approaches while answer generation prefers multilingual approaches; (3) Translating offline to augment multilingual models helps candidate ranking mainly on languages with non-Latin scripts; and helps answer generation mainly on languages with Latin scripts. Still, there remains a significant performance gap between the English and the cross-lingual test sets.
[ "cs.CL" ]
false
2305.09269
2023-05-16T08:22:17Z
ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification
[ "Junfan Chen", "Richong Zhang", "Yongyi Mao", "Jie Xu" ]
Few-shot text classification has recently been promoted by the meta-learning paradigm which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. Despite their success, existing works building their meta-learner based on Prototypical Networks are unsatisfactory in learning discriminative text representations between similar classes, which may lead to contradictions during label prediction. In addition, the tasklevel and instance-level overfitting problems in few-shot text classification caused by a few training examples are not sufficiently tackled. In this work, we propose a contrastive learning framework named ContrastNet to tackle both discriminative representation and overfitting problems in few-shot text classification. ContrastNet learns to pull closer text representations belonging to the same class and push away text representations belonging to different classes, while simultaneously introducing unsupervised contrastive regularization at both task-level and instance-level to prevent overfitting. Experiments on 8 few-shot text classification datasets show that ContrastNet outperforms the current state-of-the-art models.
[ "cs.CL" ]
false
2305.09281
2023-05-16T08:37:13Z
On the Origins of Bias in NLP through the Lens of the Jim Code
[ "Fatma Elsafoury", "Gavin Abercrombie" ]
In this paper, we trace the biases in current natural language processing (NLP) models back to their origins in racism, sexism, and homophobia over the last 500 years. We review literature from critical race theory, gender studies, data ethics, and digital humanities studies, and summarize the origins of bias in NLP models from these social science perspective. We show how the causes of the biases in the NLP pipeline are rooted in social issues. Finally, we argue that the only way to fix the bias and unfairness in NLP is by addressing the social problems that caused them in the first place and by incorporating social sciences and social scientists in efforts to mitigate bias in NLP models. We provide actionable recommendations for the NLP research community to do so.
[ "cs.CL" ]
false
2305.09312
2023-05-16T09:37:08Z
Exploring the Impact of Layer Normalization for Zero-shot Neural Machine Translation
[ "Zhuoyuan Mao", "Raj Dabre", "Qianying Liu", "Haiyue Song", "Chenhui Chu", "Sadao Kurohashi" ]
This paper studies the impact of layer normalization (LayerNorm) on zero-shot translation (ZST). Recent efforts for ZST often utilize the Transformer architecture as the backbone, with LayerNorm at the input of layers (PreNorm) set as the default. However, Xu et al. (2019) has revealed that PreNorm carries the risk of overfitting the training data. Based on this, we hypothesize that PreNorm may overfit supervised directions and thus have low generalizability for ZST. Through experiments on OPUS, IWSLT, and Europarl datasets for 54 ZST directions, we demonstrate that the original Transformer setting of LayerNorm after residual connections (PostNorm) consistently outperforms PreNorm by up to 12.3 BLEU points. We then study the performance disparities by analyzing the differences in off-target rates and structural variations between PreNorm and PostNorm. This study highlights the need for careful consideration of the LayerNorm setting for ZST.
[ "cs.CL" ]
false
2305.09335
2023-05-16T10:19:12Z
MsPrompt: Multi-step Prompt Learning for Debiasing Few-shot Event Detection
[ "Siyuan Wang", "Jianming Zheng", "Xuejun Hu", "Fei Cai", "Chengyu Song", "Xueshan Luo" ]
Event detection (ED) is aimed to identify the key trigger words in unstructured text and predict the event types accordingly. Traditional ED models are too data-hungry to accommodate real applications with scarce labeled data. Besides, typical ED models are facing the context-bypassing and disabled generalization issues caused by the trigger bias stemming from ED datasets. Therefore, we focus on the true few-shot paradigm to satisfy the low-resource scenarios. In particular, we propose a multi-step prompt learning model (MsPrompt) for debiasing few-shot event detection, that consists of the following three components: an under-sampling module targeting to construct a novel training set that accommodates the true few-shot setting, a multi-step prompt module equipped with a knowledge-enhanced ontology to leverage the event semantics and latent prior knowledge in the PLMs sufficiently for tackling the context-bypassing problem, and a prototypical module compensating for the weakness of classifying events with sparse data and boost the generalization performance. Experiments on two public datasets ACE-2005 and FewEvent show that MsPrompt can outperform the state-of-the-art models, especially in the strict low-resource scenarios reporting 11.43% improvement in terms of weighted F1-score against the best-performing baseline and achieving an outstanding debiasing performance.
[ "cs.CL" ]
false
2305.09400
2023-05-16T12:31:53Z
Consistent Multi-Granular Rationale Extraction for Explainable Multi-hop Fact Verification
[ "Jiasheng Si", "Yingjie Zhu", "Deyu Zhou" ]
The success of deep learning models on multi-hop fact verification has prompted researchers to understand the behavior behind their veracity. One possible way is erasure search: obtaining the rationale by entirely removing a subset of input without compromising the veracity prediction. Although extensively explored, existing approaches fall within the scope of the single-granular (tokens or sentences) explanation, which inevitably leads to explanation redundancy and inconsistency. To address such issues, this paper explores the viability of multi-granular rationale extraction with consistency and faithfulness for explainable multi-hop fact verification. In particular, given a pretrained veracity prediction model, both the token-level explainer and sentence-level explainer are trained simultaneously to obtain multi-granular rationales via differentiable masking. Meanwhile, three diagnostic properties (fidelity, consistency, salience) are introduced and applied to the training process, to ensure that the extracted rationales satisfy faithfulness and consistency. Experimental results on three multi-hop fact verification datasets show that the proposed approach outperforms some state-of-the-art baselines.
[ "cs.CL" ]
false
2305.09506
2023-05-16T14:59:38Z
Fuzzy Temporal Protoforms for the Quantitative Description of Processes in Natural Language
[ "Yago Fontenla-Seco", "Alberto Bugarín-Diz", "Manuel Lama" ]
In this paper, we propose a series of fuzzy temporal protoforms in the framework of the automatic generation of quantitative and qualitative natural language descriptions of processes. The model includes temporal and causal information from processes and attributes, quantifies attributes in time during the process life-span and recalls causal relations and temporal distances between events, among other features. Through integrating process mining techniques and fuzzy sets within the usual Data-to-Text architecture, our framework is able to extract relevant quantitative temporal as well as structural information from a process and describe it in natural language involving uncertain terms. A real use-case in the cardiology domain is presented, showing the potential of our model for providing natural language explanations addressed to domain experts.
[ "cs.CL" ]
false
2305.09509
2023-05-16T15:02:23Z
Bidirectional Generative Framework for Cross-domain Aspect-based Sentiment Analysis
[ "Yue Deng", "Wenxuan Zhang", "Sinno Jialin Pan", "Lidong Bing" ]
Cross-domain aspect-based sentiment analysis (ABSA) aims to perform various fine-grained sentiment analysis tasks on a target domain by transferring knowledge from a source domain. Since labeled data only exists in the source domain, a model is expected to bridge the domain gap for tackling cross-domain ABSA. Though domain adaptation methods have proven to be effective, most of them are based on a discriminative model, which needs to be specifically designed for different ABSA tasks. To offer a more general solution, we propose a unified bidirectional generative framework to tackle various cross-domain ABSA tasks. Specifically, our framework trains a generative model in both text-to-label and label-to-text directions. The former transforms each task into a unified format to learn domain-agnostic features, and the latter generates natural sentences from noisy labels for data augmentation, with which a more accurate model can be trained. To investigate the effectiveness and generality of our framework, we conduct extensive experiments on four cross-domain ABSA tasks and present new state-of-the-art results on all tasks. Our data and code are publicly available at \url{https://github.com/DAMO-NLP-SG/BGCA}.
[ "cs.CL" ]
false
2305.09520
2023-05-16T15:16:24Z
DLUE: Benchmarking Document Language Understanding
[ "Ruoxi Xu", "Hongyu Lin", "Xinyan Guan", "Xianpei Han", "Yingfei Sun", "Le Sun" ]
Understanding documents is central to many real-world tasks but remains a challenging topic. Unfortunately, there is no well-established consensus on how to comprehensively evaluate document understanding abilities, which significantly hinders the fair comparison and measuring the progress of the field. To benchmark document understanding researches, this paper summarizes four representative abilities, i.e., document classification, document structural analysis, document information extraction, and document transcription. Under the new evaluation framework, we propose \textbf{Document Language Understanding Evaluation} -- \textbf{DLUE}, a new task suite which covers a wide-range of tasks in various forms, domains and document genres. We also systematically evaluate six well-established transformer models on DLUE, and find that due to the lengthy content, complicated underlying structure and dispersed knowledge, document understanding is still far from being solved, and currently there is no neural architecture that dominates all tasks, raising requirements for a universal document understanding architecture.
[ "cs.CL" ]
false
2305.09534
2023-05-16T15:26:52Z
MetaSRL++: A Uniform Scheme for Modelling Deeper Semantics
[ "Fritz Hohl", "Nianheng Wu", "Martina Galetti", "Remi van Trijp" ]
Despite enormous progress in Natural Language Processing (NLP), our field is still lacking a common deep semantic representation scheme. As a result, the problem of meaning and understanding is typically sidestepped through more simple, approximative methods. This paper argues that in order to arrive at such a scheme, we also need a common modelling scheme. It therefore introduces MetaSRL++, a uniform, language- and modality-independent modelling scheme based on Semantic Graphs, as a step towards a common representation scheme; as well as a method for defining the concepts and entities that are used in these graphs. Our output is twofold. First, we illustrate MetaSRL++ through concrete examples. Secondly, we discuss how it relates to existing work in the field.
[ "cs.CL" ]
false
2305.09598
2023-05-16T16:52:07Z
Boosting Event Extraction with Denoised Structure-to-Text Augmentation
[ "bo wang", "Heyan Huang", "Xiaochi Wei", "Ge Shi", "Xiao Liu", "Chong Feng", "Tong Zhou", "Shuaiqiang Wang", "Dawei Yin" ]
Event extraction aims to recognize pre-defined event triggers and arguments from texts, which suffer from the lack of high-quality annotations. In most NLP applications, involving a large scale of synthetic training data is a practical and effective approach to alleviate the problem of data scarcity. However, when applying to the task of event extraction, recent data augmentation methods often neglect the problem of grammatical incorrectness, structure misalignment, and semantic drifting, leading to unsatisfactory performances. In order to solve these problems, we propose a denoised structure-to-text augmentation framework for event extraction DAEE, which generates additional training data through the knowledge-based structure-to-text generation model and selects the effective subset from the generated data iteratively with a deep reinforcement learning agent. Experimental results on several datasets demonstrate that the proposed method generates more diverse text representations for event extraction and achieves comparable results with the state-of-the-art.
[ "cs.CL" ]
false
2305.09756
2023-05-16T19:08:18Z
Clinical Note Owns its Hierarchy: Multi-Level Hypergraph Neural Networks for Patient-Level Representation Learning
[ "Nayeon Kim", "Yinhua Piao", "Sun Kim" ]
Leveraging knowledge from electronic health records (EHRs) to predict a patient's condition is essential to the effective delivery of appropriate care. Clinical notes of patient EHRs contain valuable information from healthcare professionals, but have been underused due to their difficult contents and complex hierarchies. Recently, hypergraph-based methods have been proposed for document classifications. Directly adopting existing hypergraph methods on clinical notes cannot sufficiently utilize the hierarchy information of the patient, which can degrade clinical semantic information by (1) frequent neutral words and (2) hierarchies with imbalanced distribution. Thus, we propose a taxonomy-aware multi-level hypergraph neural network (TM-HGNN), where multi-level hypergraphs assemble useful neutral words with rare keywords via note and taxonomy level hyperedges to retain the clinical semantic information. The constructed patient hypergraphs are fed into hierarchical message passing layers for learning more balanced multi-level knowledge at the note and taxonomy levels. We validate the effectiveness of TM-HGNN by conducting extensive experiments with MIMIC-III dataset on benchmark in-hospital-mortality prediction.
[ "cs.CL" ]
false
2305.09148
2023-05-16T03:53:30Z
Dual-Alignment Pre-training for Cross-lingual Sentence Embedding
[ "Ziheng Li", "Shaohan Huang", "Zihan Zhang", "Zhi-Hong Deng", "Qiang Lou", "Haizhen Huang", "Jian Jiao", "Furu Wei", "Weiwei Deng", "Qi Zhang" ]
Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at https://github.com/ChillingDream/DAP.
[ "cs.CL", "cs.AI" ]
true
2305.09220
2023-05-16T06:53:21Z
Towards Unifying Multi-Lingual and Cross-Lingual Summarization
[ "Jiaan Wang", "Fandong Meng", "Duo Zheng", "Yunlong Liang", "Zhixu Li", "Jianfeng Qu", "Jie Zhou" ]
To adapt text summarization to the multilingual world, previous work proposes multi-lingual summarization (MLS) and cross-lingual summarization (CLS). However, these two tasks have been studied separately due to the different definitions, which limits the compatible and systematic research on both of them. In this paper, we aim to unify MLS and CLS into a more general setting, i.e., many-to-many summarization (M2MS), where a single model could process documents in any language and generate their summaries also in any language. As the first step towards M2MS, we conduct preliminary studies to show that M2MS can better transfer task knowledge across different languages than MLS and CLS. Furthermore, we propose Pisces, a pre-trained M2MS model that learns language modeling, cross-lingual ability and summarization ability via three-stage pre-training. Experimental results indicate that our Pisces significantly outperforms the state-of-the-art baselines, especially in the zero-shot directions, where there is no training data from the source-language documents to the target-language summaries.
[ "cs.CL", "cs.AI" ]
false
2305.09246
2023-05-16T07:52:57Z
Maybe Only 0.5% Data is Needed: A Preliminary Exploration of Low Training Data Instruction Tuning
[ "Hao Chen", "Yiming Zhang", "Qi Zhang", "Hantao Yang", "Xiaomeng Hu", "Xuetao Ma", "Yifan Yanggong", "Junbo Zhao" ]
Instruction tuning for large language models (LLMs) has gained attention from researchers due to its ability to unlock the potential of LLMs in following instructions. While instruction tuning offers advantages for facilitating the adaptation of large language models (LLMs) to downstream tasks as a fine-tuning approach, training models with tens of millions or even billions of parameters on large amounts of data results in unaffordable computational costs. To address this, we focus on reducing the data used in LLM instruction tuning to decrease training costs and improve data efficiency, dubbed as Low Training Data Instruction Tuning (LTD Instruction Tuning). Specifically, this paper conducts a preliminary exploration into reducing the data used in LLM training and identifies several observations regarding task specialization for LLM training, such as the optimization of performance for a specific task, the number of instruction types required for instruction tuning, and the amount of data required for task-specific models. The results suggest that task-specific models can be trained using less than 0.5% of the original dataset, with a 2% improvement in performance over those trained on full task-related data.
[ "cs.AI", "cs.CL" ]
false
2305.09258
2023-05-16T08:06:11Z
HyHTM: Hyperbolic Geometry based Hierarchical Topic Models
[ "Simra Shahid", "Tanay Anand", "Nikitha Srikanth", "Sumit Bhatia", "Balaji Krishnamurthy", "Nikaash Puri" ]
Hierarchical Topic Models (HTMs) are useful for discovering topic hierarchies in a collection of documents. However, traditional HTMs often produce hierarchies where lowerlevel topics are unrelated and not specific enough to their higher-level topics. Additionally, these methods can be computationally expensive. We present HyHTM - a Hyperbolic geometry based Hierarchical Topic Models - that addresses these limitations by incorporating hierarchical information from hyperbolic geometry to explicitly model hierarchies in topic models. Experimental results with four baselines show that HyHTM can better attend to parent-child relationships among topics. HyHTM produces coherent topic hierarchies that specialise in granularity from generic higher-level topics to specific lowerlevel topics. Further, our model is significantly faster and leaves a much smaller memory footprint than our best-performing baseline.We have made the source code for our algorithm publicly accessible.
[ "cs.IR", "cs.CL" ]
false
2305.09316
2023-05-16T09:44:38Z
Enhancing Keyphrase Extraction from Long Scientific Documents using Graph Embeddings
[ "Roberto Martínez-Cruz", "Debanjan Mahata", "Alvaro J. López-López", "José Portela" ]
In this study, we investigate using graph neural network (GNN) representations to enhance contextualized representations of pre-trained language models (PLMs) for keyphrase extraction from lengthy documents. We show that augmenting a PLM with graph embeddings provides a more comprehensive semantic understanding of words in a document, particularly for long documents. We construct a co-occurrence graph of the text and embed it using a graph convolutional network (GCN) trained on the task of edge prediction. We propose a graph-enhanced sequence tagging architecture that augments contextualized PLM embeddings with graph representations. Evaluating on benchmark datasets, we demonstrate that enhancing PLMs with graph embeddings outperforms state-of-the-art models on long documents, showing significant improvements in F1 scores across all the datasets. Our study highlights the potential of GNN representations as a complementary approach to improve PLM performance for keyphrase extraction from long documents.
[ "cs.CL", "cs.AI" ]
false
2305.09402
2023-05-16T12:44:39Z
A Preliminary Analysis on the Code Generation Capabilities of GPT-3.5 and Bard AI Models for Java Functions
[ "Giuseppe Destefanis", "Silvia Bartolucci", "Marco Ortu" ]
This paper evaluates the capability of two state-of-the-art artificial intelligence (AI) models, GPT-3.5 and Bard, in generating Java code given a function description. We sourced the descriptions from CodingBat.com, a popular online platform that provides practice problems to learn programming. We compared the Java code generated by both models based on correctness, verified through the platform's own test cases. The results indicate clear differences in the capabilities of the two models. GPT-3.5 demonstrated superior performance, generating correct code for approximately 90.6% of the function descriptions, whereas Bard produced correct code for 53.1% of the functions. While both models exhibited strengths and weaknesses, these findings suggest potential avenues for the development and refinement of more advanced AI-assisted code generation tools. The study underlines the potential of AI in automating and supporting aspects of software development, although further research is required to fully realize this potential.
[ "cs.SE", "cs.CL" ]
false
2305.09410
2023-05-16T12:55:43Z
About Evaluation of F1 Score for RECENT Relation Extraction System
[ "Michał Olek" ]
This document contains a discussion of the F1 score evaluation used in the article 'Relation Classification with Entity Type Restriction' by Shengfei Lyu, Huanhuan Chen published on Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. The authors created a system named RECENT and claim it achieves (then) a new state-of-the-art result 75.2 (previous 74.8) on the TACRED dataset, while after correcting errors and reevaluation the final result is 65.16
[ "cs.CL", "cs.AI" ]
false
2305.09612
2023-05-16T17:04:48Z
Large Language Models are Built-in Autoregressive Search Engines
[ "Noah Ziems", "Wenhao Yu", "Zhihan Zhang", "Meng Jiang" ]
Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few {Query-URL} pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90\% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at \url{https://github.com/Ziems/llm-url}.
[ "cs.CL", "cs.IR" ]
false
2305.09731
2023-05-16T18:05:19Z
What In-Context Learning "Learns" In-Context: Disentangling Task Recognition and Task Learning
[ "Jane Pan", "Tianyu Gao", "Howard Chen", "Danqi Chen" ]
Large language models (LLMs) exploit in-context learning (ICL) to solve tasks with only a few demonstrations, but its mechanisms are not yet well-understood. Some works suggest that LLMs only recall already learned concepts from pre-training, while others hint that ICL performs implicit learning over demonstrations. We characterize two ways through which ICL leverages demonstrations. Task recognition (TR) captures the extent to which LLMs can recognize a task through demonstrations -- even without ground-truth labels -- and apply their pre-trained priors, whereas task learning (TL) is the ability to capture new input-label mappings unseen in pre-training. Using a wide range of classification datasets and three LLM families (GPT-3, LLaMA and OPT), we design controlled experiments to disentangle the roles of TR and TL in ICL. We show that (1) models can achieve non-trivial performance with only TR, and TR does not further improve with larger models or more demonstrations; (2) LLMs acquire TL as the model scales, and TL's performance consistently improves with more demonstrations in context. Our findings unravel two different forces behind ICL and we advocate for discriminating them in future ICL research due to their distinct nature.
[ "cs.CL", "cs.LG" ]
false
2305.09785
2023-05-16T20:17:02Z
Distilling Semantic Concept Embeddings from Contrastively Fine-Tuned Language Models
[ "Na Li", "Hanane Kteich", "Zied Bouraoui", "Steven Schockaert" ]
Learning vectors that capture the meaning of concepts remains a fundamental challenge. Somewhat surprisingly, perhaps, pre-trained language models have thus far only enabled modest improvements to the quality of such concept embeddings. Current strategies for using language models typically represent a concept by averaging the contextualised representations of its mentions in some corpus. This is potentially sub-optimal for at least two reasons. First, contextualised word vectors have an unusual geometry, which hampers downstream tasks. Second, concept embeddings should capture the semantic properties of concepts, whereas contextualised word vectors are also affected by other factors. To address these issues, we propose two contrastive learning strategies, based on the view that whenever two sentences reveal similar properties, the corresponding contextualised vectors should also be similar. One strategy is fully unsupervised, estimating the properties which are expressed in a sentence from the neighbourhood structure of the contextualised word embeddings. The second strategy instead relies on a distant supervision signal from ConceptNet. Our experimental results show that the resulting vectors substantially outperform existing concept embeddings in predicting the semantic properties of concepts, with the ConceptNet-based strategy achieving the best results. These findings are furthermore confirmed in a clustering task and in the downstream task of ontology completion.
[ "cs.CL", "cs.AI" ]
false
2305.10448
2023-05-16T15:25:19Z
Sequence-to-Sequence Pre-training with Unified Modality Masking for Visual Document Understanding
[ "Shuwei Feng", "Tianyang Zhan", "Zhanming Jie", "Trung Quoc Luong", "Xiaoran Jin" ]
This paper presents GenDoc, a general sequence-to-sequence document understanding model pre-trained with unified masking across three modalities: text, image, and layout. The proposed model utilizes an encoder-decoder architecture, which allows for increased adaptability to a wide range of downstream tasks with diverse output formats, in contrast to the encoder-only models commonly employed in document understanding. In addition to the traditional text infilling task used in previous encoder-decoder models, our pre-training extends to include tasks of masked image token prediction and masked layout prediction. We also design modality-specific instruction and adopt both disentangled attention and the mixture-of-modality-experts strategy to effectively capture the information leveraged by each modality. Evaluation of the proposed model through extensive experiments on several downstream tasks in document understanding demonstrates its ability to achieve superior or competitive performance compared to state-of-the-art approaches. Our analysis further suggests that GenDoc is more robust than the encoder-only models in scenarios where the OCR quality is imperfect.
[ "cs.CL", "cs.AI" ]
false
2305.09167
2023-05-16T04:52:29Z
Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion
[ "Xintao Zhao", "Shuai Wang", "Yang Chao", "Zhiyong Wu", "Helen Meng" ]
Nowadays, recognition-synthesis-based methods have been quite popular with voice conversion (VC). By introducing linguistics features with good disentangling characters extracted from an automatic speech recognition (ASR) model, the VC performance achieved considerable breakthroughs. Recently, self-supervised learning (SSL) methods trained with a large-scale unannotated speech corpus have been applied to downstream tasks focusing on the content information, which is suitable for VC tasks. However, a huge amount of speaker information in SSL representations degrades timbre similarity and the quality of converted speech significantly. To address this problem, we proposed a high-similarity any-to-one voice conversion method with the input of SSL representations. We incorporated adversarial training mechanisms in the synthesis module using external unannotated corpora. Two auxiliary discriminators were trained to distinguish whether a sequence of mel-spectrograms has been converted by the acoustic model and whether a sequence of content embeddings contains speaker information from external corpora. Experimental results show that our proposed method achieves comparable similarity and higher naturalness than the supervised method, which needs a huge amount of annotated corpora for training and is applicable to improve similarity for VC methods with other SSL representations as input.
[ "cs.SD", "cs.CL", "eess.AS" ]
false
2305.09204
2023-05-16T06:27:27Z
The Weighted Möbius Score: A Unified Framework for Feature Attribution
[ "Yifan Jiang", "Shane Steinert-Threlkeld" ]
Feature attribution aims to explain the reasoning behind a black-box model's prediction by identifying the impact of each feature on the prediction. Recent work has extended feature attribution to interactions between multiple features. However, the lack of a unified framework has led to a proliferation of methods that are often not directly comparable. This paper introduces a parameterized attribution framework -- the Weighted M\"obius Score -- and (i) shows that many different attribution methods for both individual features and feature interactions are special cases and (ii) identifies some new methods. By studying the vector space of attribution methods, our framework utilizes standard linear algebra tools and provides interpretations in various fields, including cooperative game theory and causal mediation analysis. We empirically demonstrate the framework's versatility and effectiveness by applying these attribution methods to feature interactions in sentiment analysis and chain-of-thought prompting.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2305.09313
2023-05-16T09:38:52Z
Hybrid and Collaborative Passage Reranking
[ "Zongmeng Zhang", "Wengang Zhou", "Jiaxin Shi", "Houqiang Li" ]
In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank.
[ "cs.IR", "cs.AI", "cs.CL" ]
false
2305.09574
2023-05-16T16:11:48Z
UOR: Universal Backdoor Attacks on Pre-trained Language Models
[ "Wei Du", "Peixuan Li", "Boqun Li", "Haodong Zhao", "Gongshen Liu" ]
Backdoors implanted in pre-trained language models (PLMs) can be transferred to various downstream tasks, which exposes a severe security threat. However, most existing backdoor attacks against PLMs are un-targeted and task-specific. Few targeted and task-agnostic methods use manually pre-defined triggers and output representations, which prevent the attacks from being more effective and general. In this paper, we first summarize the requirements that a more threatening backdoor attack against PLMs should satisfy, and then propose a new backdoor attack method called UOR, which breaks the bottleneck of the previous approach by turning manual selection into automatic optimization. Specifically, we define poisoned supervised contrastive learning which can automatically learn the more uniform and universal output representations of triggers for various PLMs. Moreover, we use gradient search to select appropriate trigger words which can be adaptive to different PLMs and vocabularies. Experiments show that our method can achieve better attack performance on various text classification tasks compared to manual methods. Further, we tested our method on PLMs with different architectures, different usage paradigms, and more difficult tasks, which demonstrated the universality of our method.
[ "cs.CL", "cs.AI", "cs.CR" ]
false
2305.09617
2023-05-16T17:11:29Z
Towards Expert-Level Medical Question Answering with Large Language Models
[ "Karan Singhal", "Tao Tu", "Juraj Gottweis", "Rory Sayres", "Ellery Wulczyn", "Le Hou", "Kevin Clark", "Stephen Pfohl", "Heather Cole-Lewis", "Darlene Neal", "Mike Schaekermann", "Amy Wang", "Mohamed Amin", "Sami Lachgar", "Philip Mansfield", "Sushant Prakash", "Bradley Green", "Ewa Dominowska", "Blaise Aguera y Arcas", "Nenad Tomasev", "Yun Liu", "Renee Wong", "Christopher Semturs", "S. Sara Mahdavi", "Joelle Barral", "Dale Webster", "Greg S. Corrado", "Yossi Matias", "Shekoofeh Azizi", "Alan Karthikesalingam", "Vivek Natarajan" ]
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
[ "cs.CL", "cs.AI", "cs.LG" ]
true
2305.09696
2023-05-16T06:37:38Z
Generative Table Pre-training Empowers Models for Tabular Prediction
[ "Tianping Zhang", "Shaowen Wang", "Shuicheng Yan", "Jian Li", "Qian Liu" ]
Recently, the topic of table pre-training has attracted considerable research interest. However, how to employ table pre-training to boost the performance of tabular prediction remains an open challenge. In this paper, we propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction. After pre-training on a large corpus of real-world tabular data, TapTap can generate high-quality synthetic tables to support various applications on tabular data, including privacy protection, low resource regime, missing value imputation, and imbalanced classification. Extensive experiments on 12 datasets demonstrate that TapTap outperforms a total of 16 baselines in different scenarios. Meanwhile, it can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer. Moreover, with the aid of table pre-training, models trained using synthetic data generated by TapTap can even compete with models using the original dataset on half of the experimental datasets, marking a milestone in the development of synthetic tabular data generation. The codes are available at https://github.com/ZhangTP1996/TapTap.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2305.09764
2023-05-16T19:31:18Z
Application-Agnostic Language Modeling for On-Device ASR
[ "Markus Nußbaum-Thom", "Lyan Verwimp", "Youssef Oualil" ]
On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling approaches to build a single application-agnostic model. We propose two novel feed-forward architectures that find an optimal trade off between different on-device constraints. In comparison to the application-specific solution, one of our novel approaches reduces the disk size by half, while maintaining speed and accuracy of the original model.
[ "cs.CL", "cs.SD", "eess.AS" ]
true
2305.09798
2023-05-16T20:46:36Z
The Ways of Words: The Impact of Word Choice on Information Engagement and Decision Making
[ "Nimrod Dvir", "Elaine Friedman", "Suraj Commuri", "Fan Yang", "Jennifer Romano" ]
Little research has explored how information engagement (IE), the degree to which individuals interact with and use information in a manner that manifests cognitively, behaviorally, and affectively. This study explored the impact of phrasing, specifically word choice, on IE and decision making. Synthesizing two theoretical models, User Engagement Theory UET and Information Behavior Theory IBT, a theoretical framework illustrating the impact of and relationships among the three IE dimensions of perception, participation, and perseverance was developed and hypotheses generated. The framework was empirically validated in a large-scale user study measuring how word choice impacts the dimensions of IE. The findings provide evidence that IE differs from other forms of engagement in that it is driven and fostered by the expression of the information itself, regardless of the information system used to view, interact with, and use the information. The findings suggest that phrasing can have a significant effect on the interpretation of and interaction with digital information, indicating the importance of expression of information, in particular word choice, on decision making and IE. The research contributes to the literature by identifying methods for assessment and improvement of IE and decision making with digital text.
[ "cs.CL", "cs.HC", "cs.SY", "eess.SY", "stat.AP", "28-08", "H.5.2; H.1.2" ]
false
2305.09101
2023-05-16T01:57:01Z
Automatic learning algorithm selection for classification via convolutional neural networks
[ "Sebastian Maldonado", "Carla Vairetti", "Ignacio Figueroa" ]
As in any other task, the process of building machine learning models can benefit from prior experience. Meta-learning for classifier selection gains knowledge from characteristics of different datasets and/or previous performance of machine learning techniques to make better decisions for the current modeling process. Meta-learning approaches first collect meta-data that describe this prior experience and then use it as input for an algorithm selection model. In this paper, however, we propose an automatic learning scheme in which we train convolutional networks directly with the information of tabular datasets for binary classification. The goal of this study is to learn the inherent structure of the data without identifying meta-features. Experiments with simulated datasets show that the proposed approach achieves nearly perfect performance in identifying linear and nonlinear patterns, outperforming the traditional two-step method based on meta-features. The proposed method is then applied to real-world datasets, making suggestions about the best classifiers that can be considered based on the structure of the data.
[ "cs.LG" ]
false
2305.09178
2023-05-16T05:30:13Z
Empirical Analysis of the Inductive Bias of Recurrent Neural Networks by Discrete Fourier Transform of Output Sequences
[ "Taiga Ishii", "Ryo Ueda", "Yusuke Miyao" ]
A unique feature of Recurrent Neural Networks (RNNs) is that it incrementally processes input sequences. In this research, we aim to uncover the inherent generalization properties, i.e., inductive bias, of RNNs with respect to how frequently RNNs switch the outputs through time steps in the sequence classification task, which we call output sequence frequency. Previous work analyzed inductive bias by training models with a few synthetic data and comparing the model's generalization with candidate generalization patterns. However, when examining the output sequence frequency, previous methods cannot be directly applied since enumerating candidate patterns is computationally difficult for longer sequences. To this end, we propose to directly calculate the output sequence frequency for each model by regarding the outputs of the model as discrete-time signals and applying frequency domain analysis. Experimental results showed that Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have an inductive bias towards lower-frequency patterns, while Elman RNN tends to learn patterns in which the output changes at high frequencies. We also found that the inductive bias of LSTM and GRU varies with the number of layers and the size of hidden layers.
[ "cs.LG" ]
false
2305.09288
2023-05-16T08:48:36Z
A Dictionary-based approach to Time Series Ordinal Classification
[ "Rafael Ayllón-Gavilán", "David Guijo-Rubio", "Pedro Antonio Gutiérrez", "César Hervás-Martinez" ]
Time Series Classification (TSC) is an extensively researched field from which a broad range of real-world problems can be addressed obtaining excellent results. One sort of the approaches performing well are the so-called dictionary-based techniques. The Temporal Dictionary Ensemble (TDE) is the current state-of-the-art dictionary-based TSC approach. In many TSC problems we find a natural ordering in the labels associated with the time series. This characteristic is referred to as ordinality, and can be exploited to improve the methods performance. The area dealing with ordinal time series is the Time Series Ordinal Classification (TSOC) field, which is yet unexplored. In this work, we present an ordinal adaptation of the TDE algorithm, known as ordinal TDE (O-TDE). For this, a comprehensive comparison using a set of 18 TSOC problems is performed. Experiments conducted show the improvement achieved by the ordinal dictionary-based approach in comparison to four other existing nominal dictionary-based techniques.
[ "cs.LG" ]
false
2305.09424
2023-05-16T13:30:15Z
Unwrapping All ReLU Networks
[ "Mattia Jacopo Villani", "Peter McBurney" ]
Deep ReLU Networks can be decomposed into a collection of linear models, each defined in a region of a partition of the input space. This paper provides three results extending this theory. First, we extend this linear decompositions to Graph Neural networks and tensor convolutional networks, as well as networks with multiplicative interactions. Second, we provide proofs that neural networks can be understood as interpretable models such as Multivariate Decision trees and logical theories. Finally, we show how this model leads to computing cheap and exact SHAP values. We validate the theory through experiments with on Graph Neural Networks.
[ "cs.LG" ]
false
2305.09425
2023-05-16T13:31:11Z
When is an SHM problem a Multi-Task-Learning problem?
[ "Sarah Bee", "Lawrence Bull", "Nikolas Dervilis", "Keith Worden" ]
Multi-task neural networks learn tasks simultaneously to improve individual task performance. There are three mechanisms of multi-task learning (MTL) which are explored here for the context of structural health monitoring (SHM): (i) the natural occurrence of multiple tasks; (ii) using outputs as inputs (both linked to the recent research in population-based SHM (PBSHM)); and, (iii) additional loss functions to provide different insights. Each of these problem settings for MTL is detailed and an example is given.
[ "cs.LG" ]
false
2305.09500
2023-05-16T14:53:07Z
Contrastive Label Enhancement
[ "Yifei Wang", "Yiyang Zhou", "Jihua Zhu", "Xinyuan Liu", "Wenbiao Yan", "Zhiqiang Tian" ]
Label distribution learning (LDL) is a new machine learning paradigm for solving label ambiguity. Since it is difficult to directly obtain label distributions, many studies are focusing on how to recover label distributions from logical labels, dubbed label enhancement (LE). Existing LE methods estimate label distributions by simply building a mapping relationship between features and label distributions under the supervision of logical labels. They typically overlook the fact that both features and logical labels are descriptions of the instance from different views. Therefore, we propose a novel method called Contrastive Label Enhancement (ConLE) which integrates features and logical labels into the unified projection space to generate high-level features by contrastive learning strategy. In this approach, features and logical labels belonging to the same sample are pulled closer, while those of different samples are projected farther away from each other in the projection space. Subsequently, we leverage the obtained high-level features to gain label distributions through a welldesigned training strategy that considers the consistency of label attributes. Extensive experiments on LDL benchmark datasets demonstrate the effectiveness and superiority of our method.
[ "cs.LG" ]
false
2305.09628
2023-05-16T17:36:34Z
Faster Federated Learning with Decaying Number of Local SGD Steps
[ "Jed Mills", "Jia Hu", "Geyong Min" ]
In Federated Learning (FL) client devices connected over the internet collaboratively train a machine learning model without sharing their private data with a central server or with other clients. The seminal Federated Averaging (FedAvg) algorithm trains a single global model by performing rounds of local training on clients followed by model averaging. FedAvg can improve the communication-efficiency of training by performing more steps of Stochastic Gradient Descent (SGD) on clients in each round. However, client data in real-world FL is highly heterogeneous, which has been extensively shown to slow model convergence and harm final performance when $K > 1$ steps of SGD are performed on clients per round. In this work we propose decaying $K$ as training progresses, which can jointly improve the final performance of the FL model whilst reducing the wall-clock time and the total computational cost of training compared to using a fixed $K$. We analyse the convergence of FedAvg with decaying $K$ for strongly-convex objectives, providing novel insights into the convergence properties, and derive three theoretically-motivated decay schedules for $K$. We then perform thorough experiments on four benchmark FL datasets (FEMNIST, CIFAR100, Sentiment140, Shakespeare) to show the real-world benefit of our approaches in terms of real-world convergence time, computational cost, and generalisation performance.
[ "cs.LG" ]
false
2305.09777
2023-05-16T20:02:39Z
BSGAN: A Novel Oversampling Technique for Imbalanced Pattern Recognitions
[ "Md Manjurul Ahsan", "Shivakumar Raman", "Zahed Siddique" ]
Class imbalanced problems (CIP) are one of the potential challenges in developing unbiased Machine Learning (ML) models for predictions. CIP occurs when data samples are not equally distributed between the two or multiple classes. Borderline-Synthetic Minority Oversampling Techniques (SMOTE) is one of the approaches that has been used to balance the imbalance data by oversampling the minor (limited) samples. One of the potential drawbacks of existing Borderline-SMOTE is that it focuses on the data samples that lay at the border point and gives more attention to the extreme observations, ultimately limiting the creation of more diverse data after oversampling, and that is the almost scenario for the most of the borderline-SMOTE based oversampling strategies. As an effect, marginalization occurs after oversampling. To address these issues, in this work, we propose a hybrid oversampling technique by combining the power of borderline SMOTE and Generative Adversarial Network to generate more diverse data that follow Gaussian distributions. We named it BSGAN and tested it on four highly imbalanced datasets: Ecoli, Wine quality, Yeast, and Abalone. Our preliminary computational results reveal that BSGAN outperformed existing borderline SMOTE and GAN-based oversampling techniques and created a more diverse dataset that follows normal distribution after oversampling effect.
[ "cs.LG" ]
false
2305.10451
2023-05-16T21:40:51Z
How does agency impact human-AI collaborative design space exploration? A case study on ship design with deep generative models
[ "Shahroz Khan", "Panagiotis Kaklis", "Kosa Goucher-Lambert" ]
Typical parametric approaches restrict the exploration of diverse designs by generating variations based on a baseline design. In contrast, generative models provide a solution by leveraging existing designs to create compact yet diverse generative design spaces (GDSs). However, the effectiveness of current exploration methods in complex GDSs, especially in ship hull design, remains unclear. To that end, we first construct a GDS using a generative adversarial network, trained on 52,591 designs of various ship types. Next, we constructed three modes of exploration, random (REM), semi-automated (SAEM) and automated (AEM), with varying levels of user involvement to explore GDS for novel and optimised designs. In REM, users manually explore the GDS based on intuition. In SAEM, both the users and optimiser drive the exploration. The optimiser focuses on exploring a diverse set of optimised designs, while the user directs the exploration towards their design preference. AEM uses an optimiser to search for the global optimum based on design performance. Our results revealed that REM generates the most diverse designs, followed by SAEM and AEM. However, the SAEM and AEM produce better-performing designs. Specifically, SAEM is the most effective in exploring designs with a high trade-off between novelty and performance. In conclusion, our study highlights the need for innovative exploration approaches to fully harness the potential of GDS in design optimisation.
[ "cs.LG" ]
false
2305.09084
2023-05-16T00:57:22Z
A Review of Data-driven Approaches for Malicious Website Detection
[ "Zeyuan Hu", "Ziang Yuan" ]
The detection of malicious websites has become a critical issue in cybersecurity. Therefore, this paper offers a comprehensive review of data-driven methods for detecting malicious websites. Traditional approaches and their limitations are discussed, followed by an overview of data-driven approaches. The paper establishes the data-feature-model-extension pipeline and the latest research developments of data-driven approaches, including data preprocessing, feature extraction, model construction and technology extension. Specifically, this paper compares methods using deep learning models proposed in recent years. Furthermore, the paper follows the data-feature-model-extension pipeline to discuss the challenges together with some future directions of data-driven methods in malicious website detection.
[ "cs.CR", "cs.LG" ]
false
2305.09088
2023-05-16T01:15:00Z
The Hessian perspective into the Nature of Convolutional Neural Networks
[ "Sidak Pal Singh", "Thomas Hofmann", "Bernhard Schölkopf" ]
While Convolutional Neural Networks (CNNs) have long been investigated and applied, as well as theorized, we aim to provide a slightly different perspective into their nature -- through the perspective of their Hessian maps. The reason is that the loss Hessian captures the pairwise interaction of parameters and therefore forms a natural ground to probe how the architectural aspects of CNN get manifested in its structure and properties. We develop a framework relying on Toeplitz representation of CNNs, and then utilize it to reveal the Hessian structure and, in particular, its rank. We prove tight upper bounds (with linear activations), which closely follow the empirical trend of the Hessian rank and hold in practice in more general settings. Overall, our work generalizes and establishes the key insight that, even in CNNs, the Hessian rank grows as the square root of the number of parameters.
[ "cs.LG", "stat.ML" ]
false
2305.09245
2023-05-16T07:52:08Z
Sorting and Hypergraph Orientation under Uncertainty with Predictions
[ "Thomas Erlebach", "Murilo Santos de Lima", "Nicole Megow", "Jens Schlöter" ]
Learning-augmented algorithms have been attracting increasing interest, but have only recently been considered in the setting of explorable uncertainty where precise values of uncertain input elements can be obtained by a query and the goal is to minimize the number of queries needed to solve a problem. We study learning-augmented algorithms for sorting and hypergraph orientation under uncertainty, assuming access to untrusted predictions for the uncertain values. Our algorithms provide improved performance guarantees for accurate predictions while maintaining worst-case guarantees that are best possible without predictions. For hypergraph orientation, for any $\gamma \geq 2$, we give an algorithm that achieves a competitive ratio of $1+1/\gamma$ for correct predictions and $\gamma$ for arbitrarily wrong predictions. For sorting, we achieve an optimal solution for accurate predictions while still being $2$-competitive for arbitrarily wrong predictions. These tradeoffs are the best possible. We also consider different error metrics and show that the performance of our algorithms degrades smoothly with the prediction error in all the cases where this is possible.
[ "cs.DS", "cs.LG" ]
false
2305.09304
2023-05-16T09:22:14Z
OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning Research
[ "Jiaming Ji", "Jiayi Zhou", "Borong Zhang", "Juntao Dai", "Xuehai Pan", "Ruiyang Sun", "Weidong Huang", "Yiran Geng", "Mickel Liu", "Yaodong Yang" ]
AI systems empowered by reinforcement learning (RL) algorithms harbor the immense potential to catalyze societal advancement, yet their deployment is often impeded by significant safety concerns. Particularly in safety-critical applications, researchers have raised concerns about unintended harms or unsafe behaviors of unaligned RL agents. The philosophy of safe reinforcement learning (SafeRL) is to align RL agents with harmless intentions and safe behavioral patterns. In SafeRL, agents learn to develop optimal policies by receiving feedback from the environment, while also fulfilling the requirement of minimizing the risk of unintended harm or unsafe behavior. However, due to the intricate nature of SafeRL algorithm implementation, combining methodologies across various domains presents a formidable challenge. This had led to an absence of a cohesive and efficacious learning framework within the contemporary SafeRL research milieu. In this work, we introduce a foundational framework designed to expedite SafeRL research endeavors. Our comprehensive framework encompasses an array of algorithms spanning different RL domains and places heavy emphasis on safety elements. Our efforts are to make the SafeRL-related research process more streamlined and efficient, therefore facilitating further research in AI safety. Our project is released at: https://github.com/PKU-Alignment/omnisafe.
[ "cs.LG", "cs.AI" ]
false
2305.09366
2023-05-16T11:46:16Z
Evaluation of self-supervised pre-training for automatic infant movement classification using wearable movement sensors
[ "Einari Vaaras", "Manu Airaksinen", "Sampsa Vanhatalo", "Okko Räsänen" ]
The recently-developed infant wearable MAIJU provides a means to automatically evaluate infants' motor performance in an objective and scalable manner in out-of-hospital settings. This information could be used for developmental research and to support clinical decision-making, such as detection of developmental problems and guiding of their therapeutic interventions. MAIJU-based analyses rely fully on the classification of infant's posture and movement; it is hence essential to study ways to increase the accuracy of such classifications, aiming to increase the reliability and robustness of the automated analysis. Here, we investigated how self-supervised pre-training improves performance of the classifiers used for analyzing MAIJU recordings, and we studied whether performance of the classifier models is affected by context-selective quality-screening of pre-training data to exclude periods of little infant movement or with missing sensors. Our experiments show that i) pre-training the classifier with unlabeled data leads to a robust accuracy increase of subsequent classification models, and ii) selecting context-relevant pre-training data leads to substantial further improvements in the classifier performance.
[ "cs.LG", "eess.SP" ]
false
2305.09385
2023-05-16T12:11:08Z
Lp- and Risk Consistency of Localized SVMs
[ "Hannes Köhler" ]
Kernel-based regularized risk minimizers, also called support vector machines (SVMs), are known to possess many desirable properties but suffer from their super-linear computational requirements when dealing with large data sets. This problem can be tackled by using localized SVMs instead, which also offer the additional advantage of being able to apply different hyperparameters to different regions of the input space. In this paper, localized SVMs are analyzed with regards to their consistency. It is proven that they inherit $L_p$- as well as risk consistency from global SVMs under very weak conditions and even if the regions underlying the localized SVMs are allowed to change as the size of the training data set increases.
[ "stat.ML", "cs.LG" ]
false
2305.09458
2023-05-16T14:18:53Z
An Empirical Study on Google Research Football Multi-agent Scenarios
[ "Yan Song", "He Jiang", "Zheng Tian", "Haifeng Zhang", "Yingping Zhang", "Jiangcheng Zhu", "Zonghong Dai", "Weinan Zhang", "Jun Wang" ]
Few multi-agent reinforcement learning (MARL) research on Google Research Football (GRF) focus on the 11v11 multi-agent full-game scenario and to the best of our knowledge, no open benchmark on this scenario has been released to the public. In this work, we fill the gap by providing a population-based MARL training pipeline and hyperparameter settings on multi-agent football scenario that outperforms the bot with difficulty 1.0 from scratch within 2 million steps. Our experiments serve as a reference for the expected performance of Independent Proximal Policy Optimization (IPPO), a state-of-the-art multi-agent reinforcement learning algorithm where each agent tries to maximize its own policy independently across various training configurations. Meanwhile, we open-source our training framework Light-MALib which extends the MALib codebase by distributed and asynchronized implementation with additional analytical tools for football games. Finally, we provide guidance for building strong football AI with population-based training and release diverse pretrained policies for benchmarking. The goal is to provide the community with a head start for whoever experiment their works on GRF and a simple-to-use population-based training framework for further improving their agents through self-play. The implementation is available at https://github.com/Shanghai-Digital-Brain-Laboratory/DB-Football.
[ "cs.LG", "cs.MA" ]
false
2305.09495
2023-05-16T14:47:55Z
Hardware Realization of Nonlinear Activation Functions for NN-based Optical Equalizers
[ "Sasipim Srivallapanondh", "Pedro J. Freire", "Antonio Napoli", "Sergei K. Turitsyn", "Jaroslaw E. Prilepsky" ]
To reduce the complexity of the hardware implementation of neural network-based optical channel equalizers, we demonstrate that the performance of the biLSTM equalizer with approximated activation functions is close to that of the original model.
[ "cs.LG", "physics.optics" ]
false
2305.09565
2023-05-16T16:02:18Z
Toward Falsifying Causal Graphs Using a Permutation-Based Test
[ "Elias Eulig", "Atalanti A. Mastakouri", "Patrick Blöbaum", "Michaela Hardt", "Dominik Janzing" ]
Understanding the causal relationships among the variables of a system is paramount to explain and control its behaviour. Inferring the causal graph from observational data without interventions, however, requires a lot of strong assumptions that are not always realistic. Even for domain experts it can be challenging to express the causal graph. Therefore, metrics that quantitatively assess the goodness of a causal graph provide helpful checks before using it in downstream tasks. Existing metrics provide an absolute number of inconsistencies between the graph and the observed data, and without a baseline, practitioners are left to answer the hard question of how many such inconsistencies are acceptable or expected. Here, we propose a novel consistency metric by constructing a surrogate baseline through node permutations. By comparing the number of inconsistencies with those on the surrogate baseline, we derive an interpretable metric that captures whether the DAG fits significantly better than random. Evaluating on both simulated and real data sets from various domains, including biology and cloud monitoring, we demonstrate that the true DAG is not falsified by our metric, whereas the wrong graphs given by a hypothetical user are likely to be falsified.
[ "stat.ML", "cs.LG" ]
false
2305.09600
2023-05-16T16:53:27Z
Deep Reinforcement Learning to Maximize Arterial Usage during Extreme Congestion
[ "Ashutosh Dutta", "Milan Jain", "Arif Khan", "Arun Sathanur" ]
Collisions, crashes, and other incidents on road networks, if left unmitigated, can potentially cause cascading failures that can affect large parts of the system. Timely handling such extreme congestion scenarios is imperative to reduce emissions, enhance productivity, and improve the quality of urban living. In this work, we propose a Deep Reinforcement Learning (DRL) approach to reduce traffic congestion on multi-lane freeways during extreme congestion. The agent is trained to learn adaptive detouring strategies for congested freeway traffic such that the freeway lanes along with the local arterial network in proximity are utilized optimally, with rewards being congestion reduction and traffic speed improvement. The experimental setup is a 2.6-mile-long 4-lane freeway stretch in Shoreline, Washington, USA with two exits and associated arterial roads simulated on a microscopic and continuous multi-modal traffic simulator SUMO (Simulation of Urban MObility) while using parameterized traffic profiles generated using real-world traffic data. Our analysis indicates that DRL-based controllers can improve average traffic speed by 21\% when compared to no-action during steep congestion. The study further discusses the trade-offs involved in the choice of reward functions, the impact of human compliance on agent performance, and the feasibility of knowledge transfer from one agent to other to address data sparsity and scaling issues.
[ "cs.AI", "cs.LG" ]
false
2305.09605
2023-05-16T16:56:19Z
Expressiveness Remarks for Denoising Diffusion Models and Samplers
[ "Francisco Vargas", "Teodora Reu", "Anna Kerekes" ]
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains. Gradual noise is added to the data using a diffusion process, which transforms the data distribution into a Gaussian. Samples from the generative model are then obtained by simulating an approximation of the time reversal of this diffusion initialized by Gaussian samples. Recent research has explored adapting diffusion models for sampling and inference tasks. In this paper, we leverage known connections to stochastic control akin to the F\"ollmer drift to extend established neural network approximation results for the F\"ollmer drift to denoising diffusion models and samplers.
[ "stat.ML", "cs.LG" ]
false
2305.09608
2023-05-16T17:00:36Z
Data Augmentation for Conflict and Duplicate Detection in Software Engineering Sentence Pairs
[ "Garima Malik", "Mucahit Cevik", "Ayşe Başar" ]
This paper explores the use of text data augmentation techniques to enhance conflict and duplicate detection in software engineering tasks through sentence pair classification. The study adapts generic augmentation techniques such as shuffling, back translation, and paraphrasing and proposes new data augmentation techniques such as Noun-Verb Substitution, target-lemma replacement and Actor-Action Substitution for software requirement texts. A comprehensive empirical analysis is conducted on six software text datasets to identify conflicts and duplicates among sentence pairs. The results demonstrate that data augmentation techniques have a significant impact on the performance of all software pair text datasets. On the other hand, in cases where the datasets are relatively balanced, the use of augmentation techniques may result in a negative effect on the classification performance.
[ "cs.SE", "cs.LG" ]
false
2305.09625
2023-05-16T17:24:28Z
Conditional variational autoencoder with Gaussian process regression recognition for parametric models
[ "Xuehan Zhang", "Lijian Jiang" ]
In this article, we present a data-driven method for parametric models with noisy observation data. Gaussian process regression based reduced order modeling (GPR-based ROM) can realize fast online predictions without using equations in the offline stage. However, GPR-based ROM does not perform well for complex systems since POD projection are naturally linear. Conditional variational autoencoder (CVAE) can address this issue via nonlinear neural networks but it has more model complexity, which poses challenges for training and tuning hyperparameters. To this end, we propose a framework of CVAE with Gaussian process regression recognition (CVAE-GPRR). The proposed method consists of a recognition model and a likelihood model. In the recognition model, we first extract low-dimensional features from data by POD to filter the redundant information with high frequency. And then a non-parametric model GPR is used to learn the map from parameters to POD latent variables, which can also alleviate the impact of noise. CVAE-GPRR can achieve the similar accuracy to CVAE but with fewer parameters. In the likelihood model, neural networks are used to reconstruct data. Besides the samples of POD latent variables and input parameters, physical variables are also added as the inputs to make predictions in the whole physical space. This can not be achieved by either GPR-based ROM or CVAE. Moreover, the numerical results show that CVAE-GPRR may alleviate the overfitting issue in CVAE.
[ "cs.CE", "cs.LG" ]
false
2305.09627
2023-05-16T17:31:50Z
Addressing computational challenges in physical system simulations with machine learning
[ "Sabber Ahamed", "Md Mesbah Uddin" ]
In this paper, we present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes. High computational costs and the resulting limited data often pose significant challenges to gaining insights into these systems or processes. Our approach involves a two-step process: initially, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes. Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model. With this framework, researchers can generate more accurate data and know the outcomes without running high computational simulations, which enables them to explore the parameter space more efficiently and gain deeper insights into physical systems or processes. We demonstrate the effectiveness of the proposed framework by applying it to two case studies, one focusing on earthquake rupture physics and the other on new material development.
[ "cs.LG", "physics.comp-ph" ]
false
2305.09648
2023-05-16T17:49:04Z
Prompt-Tuning Decision Transformer with Preference Ranking
[ "Shengchao Hu", "Li Shen", "Ya Zhang", "Dacheng Tao" ]
Prompt-tuning has emerged as a promising method for adapting pre-trained models to downstream tasks or aligning with human preferences. Prompt learning is widely used in NLP but has limited applicability to RL due to the complex physical meaning and environment-specific information contained within RL prompts. These factors require supervised learning to imitate the demonstrations and may result in a loss of meaning after learning. Additionally, directly extending prompt-tuning approaches to RL is challenging because RL prompts guide agent behavior based on environmental modeling and analysis, rather than filling in missing information, making it unlikely that adjustments to the prompt format for downstream tasks, as in NLP, can yield significant improvements. In this work, we propose the Prompt-Tuning DT algorithm to address these challenges by using trajectory segments as prompts to guide RL agents in acquiring environmental information and optimizing prompts via black-box tuning to enhance their ability to contain more relevant information, thereby enabling agents to make better decisions. Our approach involves randomly sampling a Gaussian distribution to fine-tune the elements of the prompt trajectory and using preference ranking function to find the optimization direction, thereby providing more informative prompts and guiding the agent towards specific preferences in the target environment. Extensive experiments show that with only 0.03% of the parameters learned, Prompt-Tuning DT achieves comparable or even better performance than full-model fine-tuning in low-data scenarios. Our work contributes to the advancement of prompt-tuning approaches in RL, providing a promising direction for optimizing large RL agents for specific preference tasks.
[ "cs.LG", "cs.AI" ]
false
2305.09655
2023-05-16T17:54:14Z
RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario
[ "Sanyam Jain" ]
This research paper presents an experimental approach to using the Reptile algorithm for reinforcement learning to train a neural network to play Super Mario Bros. We implement the Reptile algorithm using the Super Mario Bros Gym library and TensorFlow in Python, creating a neural network model with a single convolutional layer, a flatten layer, and a dense layer. We define the optimizer and use the Reptile class to create an instance of the Reptile meta-learning algorithm. We train the model using multiple tasks and episodes, choosing actions using the current weights of the neural network model, taking those actions in the environment, and updating the model weights using the Reptile algorithm. We evaluate the performance of the algorithm by printing the total reward for each episode. In addition, we compare the performance of the Reptile algorithm approach to two other popular reinforcement learning algorithms, Proximal Policy Optimization (PPO) and Deep Q-Network (DQN), applied to the same Super Mario Bros task. Our results demonstrate that the Reptile algorithm provides a promising approach to few-shot learning in video game AI, with comparable or even better performance than the other two algorithms, particularly in terms of moves vs distance that agent performs for 1M episodes of training. The results shows that best total distance for world 1-2 in the game environment were ~1732 (PPO), ~1840 (DQN) and ~2300 (RAMario). Full code is available at https://github.com/s4nyam/RAMario.
[ "cs.LG", "cs.MA" ]
false
2305.09695
2023-05-16T06:10:54Z
Applying Machine Learning Analysis for Software Quality Test
[ "Al Khan", "Remudin Reshid Mekuria", "Ruslan Isaev" ]
One of the biggest expense in software development is the maintenance. Therefore, it is critical to comprehend what triggers maintenance and if it may be predicted. Numerous research have demonstrated that specific methods of assessing the complexity of created programs may produce useful prediction models to ascertain the possibility of maintenance due to software failures. As a routine it is performed prior to the release, and setting up the models frequently calls for certain, object-oriented software measurements. It is not always the case that software developers have access to these measurements. In this paper, the machine learning is applied on the available data to calculate the cumulative software failure levels. A technique to forecast a software`s residual defectiveness using machine learning can be looked into as a solution to the challenge of predicting residual flaws. Software metrics and defect data were separated out of the static source code repository. Static code is used to create software metrics, and reported bugs in the repository are used to gather defect information. By using a correlation method, metrics that had no connection to the defect data were removed. This makes it possible to analyze all the data without pausing the programming process. Large, sophisticated software`s primary issue is that it is impossible to control everything manually, and the cost of an error can be quite expensive. Developers may miss errors during testing as a consequence, which will raise maintenance costs. Finding a method to accurately forecast software defects is the overall objective.
[ "cs.SE", "cs.LG" ]
false
2305.09738
2023-05-16T18:19:12Z
CQural: A Novel CNN based Hybrid Architecture for Quantum Continual Machine Learning
[ "Sanyam Jain" ]
Training machine learning models in an incremental fashion is not only important but also an efficient way to achieve artificial general intelligence. The ability that humans possess of continuous or lifelong learning helps them to not forget previously learned tasks. However, current neural network models are prone to catastrophic forgetting when it comes to continual learning. Many researchers have come up with several techniques in order to reduce the effect of forgetting from neural networks, however, all techniques are studied classically with a very less focus on changing the machine learning model architecture. In this research paper, we show that it is not only possible to circumvent catastrophic forgetting in continual learning with novel hybrid classical-quantum neural networks, but also explains what features are most important to learn for classification. In addition, we also claim that if the model is trained with these explanations, it tends to give better performance and learn specific features that are far from the decision boundary. Finally, we present the experimental results to show comparisons between classical and classical-quantum hybrid architectures on benchmark MNIST and CIFAR-10 datasets. After successful runs of learning procedure, we found hybrid neural network outperforms classical one in terms of remembering the right evidences of the class-specific features.
[ "cs.LG", "cs.AI" ]
false
2305.09838
2023-05-16T22:41:56Z
Coagent Networks: Generalized and Scaled
[ "James E. Kostas", "Scott M. Jordan", "Yash Chandak", "Georgios Theocharous", "Dhawal Gupta", "Martha White", "Bruno Castro da Silva", "Philip S. Thomas" ]
Coagent networks for reinforcement learning (RL) [Thomas and Barto, 2011] provide a powerful and flexible framework for deriving principled learning rules for arbitrary stochastic neural networks. The coagent framework offers an alternative to backpropagation-based deep learning (BDL) that overcomes some of backpropagation's main limitations. For example, coagent networks can compute different parts of the network \emph{asynchronously} (at different rates or at different times), can incorporate non-differentiable components that cannot be used with backpropagation, and can explore at levels higher than their action spaces (that is, they can be designed as hierarchical networks for exploration and/or temporal abstraction). However, the coagent framework is not just an alternative to BDL; the two approaches can be blended: BDL can be combined with coagent learning rules to create architectures with the advantages of both approaches. This work generalizes the coagent theory and learning rules provided by previous works; this generalization provides more flexibility for network architecture design within the coagent framework. This work also studies one of the chief disadvantages of coagent networks: high variance updates for networks that have many coagents and do not use backpropagation. We show that a coagent algorithm with a policy network that does not use backpropagation can scale to a challenging RL domain with a high-dimensional state and action space (the MuJoCo Ant environment), learning reasonable (although not state-of-the-art) policies. These contributions motivate and provide a more general theoretical foundation for future work that studies coagent networks.
[ "cs.LG", "cs.AI" ]
false
2305.10452
2023-05-16T23:38:34Z
Comparison of classifiers in challenge scheme
[ "Sergio Nava-Muñoz", "Mario Graff Guerrero", "Hugo Jair Escalante" ]
In recent decades, challenges have become very popular in scientific research as these are crowdsourcing schemes. In particular, challenges are essential for developing machine learning algorithms. For the challenges settings, it is vital to establish the scientific question, the dataset (with adequate quality, quantity, diversity, and complexity), performance metrics, as well as a way to authenticate the participants' results (Gold Standard). This paper addresses the problem of evaluating the performance of different competitors (algorithms) under the restrictions imposed by the challenge scheme, such as the comparison of multiple competitors with a unique dataset (with fixed size), a minimal number of submissions and, a set of metrics chosen to assess performance. The algorithms are sorted according to the performance metric. Still, it is common to observe performance differences among competitors as small as hundredths or even thousandths, so the question is whether the differences are significant. This paper analyzes the results of the MeOffendEs@IberLEF 2021 competition and proposes to make inference through resampling techniques (bootstrap) to support Challenge organizers' decision-making.
[ "cs.LG", "cs.PF" ]
false
2305.09129
2023-05-16T03:20:22Z
Graph Reinforcement Learning for Network Control via Bi-Level Optimization
[ "Daniele Gammelli", "James Harrison", "Kaidi Yang", "Marco Pavone", "Filipe Rodrigues", "Francisco C. Pereira" ]
Optimization problems over dynamic networks have been extensively studied and widely used in the past decades to formulate numerous real-world problems. However, (1) traditional optimization-based approaches do not scale to large networks, and (2) the design of good heuristics or approximation algorithms often requires significant manual trial-and-error. In this work, we argue that data-driven strategies can automate this process and learn efficient algorithms without compromising optimality. To do so, we present network control problems through the lens of reinforcement learning and propose a graph network-based framework to handle a broad class of problems. Instead of naively computing actions over high-dimensional graph elements, e.g., edges, we propose a bi-level formulation where we (1) specify a desired next state via RL, and (2) solve a convex program to best achieve it, leading to drastically improved scalability and performance. We further highlight a collection of desirable features to system designers, investigate design decisions, and present experiments on real-world control problems showing the utility, scalability, and flexibility of our framework.
[ "cs.LG", "cs.SY", "eess.SY", "math.OC" ]
false
2305.09179
2023-05-16T05:37:06Z
Ortho-ODE: Enhancing Robustness and of Neural ODEs against Adversarial Attacks
[ "Vishal Purohit" ]
Neural Ordinary Differential Equations (NODEs) probed the usage of numerical solvers to solve the differential equation characterized by a Neural Network (NN), therefore initiating a new paradigm of deep learning models with infinite depth. NODEs were designed to tackle the irregular time series problem. However, NODEs have demonstrated robustness against various noises and adversarial attacks. This paper is about the natural robustness of NODEs and examines the cause behind such surprising behaviour. We show that by controlling the Lipschitz constant of the ODE dynamics the robustness can be significantly improved. We derive our approach from Grownwall's inequality. Further, we draw parallels between contractivity theory and Grownwall's inequality. Experimentally we corroborate the enhanced robustness on numerous datasets - MNIST, CIFAR-10, and CIFAR 100. We also present the impact of adaptive and non-adaptive solvers on the robustness of NODEs.
[ "cs.LG", "cs.AI", "cs.CR" ]
false
2305.09199
2023-05-16T06:15:13Z
Machine learning enhanced real-time aerodynamic forces prediction based on sparse pressure sensor inputs
[ "Junming Duan", "Qian Wang", "Jan S. Hesthaven" ]
Accurate prediction of aerodynamic forces in real-time is crucial for autonomous navigation of unmanned aerial vehicles (UAVs). This paper presents a data-driven aerodynamic force prediction model based on a small number of pressure sensors located on the surface of UAV. The model is built on a linear term that can make a reasonably accurate prediction and a nonlinear correction for accuracy improvement. The linear term is based on a reduced basis reconstruction of the surface pressure distribution, where the basis is extracted from numerical simulation data and the basis coefficients are determined by solving linear pressure reconstruction equations at a set of sensor locations. Sensor placement is optimized using the discrete empirical interpolation method (DEIM). Aerodynamic forces are computed by integrating the reconstructed surface pressure distribution. The nonlinear term is an artificial neural network (NN) that is trained to bridge the gap between the ground truth and the DEIM prediction, especially in the scenario where the DEIM model is constructed from simulation data with limited fidelity. A large network is not necessary for accurate correction as the linear model already captures the main dynamics of the surface pressure field, thus yielding an efficient DEIM+NN aerodynamic force prediction model. The model is tested on numerical and experimental dynamic stall data of a 2D NACA0015 airfoil, and numerical simulation data of dynamic stall of a 3D drone. Numerical results demonstrate that the machine learning enhanced model can make fast and accurate predictions of aerodynamic forces using only a few pressure sensors, even for the NACA0015 case in which the simulations do not agree well with the wind tunnel experiments. Furthermore, the model is robust to noise.
[ "cs.LG", "cs.NA", "math.NA", "physics.flu-dyn" ]
false
2305.09207
2023-05-16T06:32:43Z
Counterfactual Outcome Prediction using Structured State Space Model
[ "Vishal Purohit" ]
Counterfactual outcome prediction in longitudinal data has recently gained attention due to its potential applications in healthcare and social sciences. In this paper, we explore the use of the state space model, a popular sequence model, for this task. Specifically, we compare the performance of two models: Treatment Effect Neural Controlled Differential Equation (TE-CDE) and structured state space model (S4Model). While TE-CDE uses controlled differential equations to address time-dependent confounding, it suffers from optimization issues and slow training. In contrast, S4Model is more efficient at modeling long-range dependencies and easier to train. We evaluate the models on a simulated lung tumor growth dataset and find that S4Model outperforms TE-CDE with 1.63x reduction in per epoch training time and 10x better normalized mean squared error. Additionally, S4Model is more stable during training and less sensitive to weight initialization than TE-CDE. Our results suggest that the state space model may be a promising approach for counterfactual outcome prediction in longitudinal data, with S4Model offering a more efficient and effective alternative to TE-CDE.
[ "cs.LG", "cs.AI", "stat.ME" ]
false
2305.09216
2023-05-16T06:48:40Z
Component Training of Turbo Autoencoders
[ "Jannis Clausius", "Marvin Geiselhart", "Stephan ten Brink" ]
Isolated training with Gaussian priors (TGP) of the component autoencoders of turbo-autoencoder architectures enables faster, more consistent training and better generalization to arbitrary decoding iterations than training based on deep unfolding. We propose fitting the components via extrinsic information transfer (EXIT) charts to a desired behavior which enables scaling to larger message lengths ($k \approx 1000$) while retaining competitive performance. To the best of our knowledge, this is the first autoencoder that performs close to classical codes in this regime. Although the binary cross-entropy (BCE) loss function optimizes the bit error rate (BER) of the components, the design via EXIT charts enables to focus on the block error rate (BLER). In serially concatenated systems the component-wise TGP approach is well known for inner components with a fixed outer binary interface, e.g., a learned inner code or equalizer, with an outer binary error correcting code. In this paper we extend the component training to structures with an inner and outer autoencoder, where we propose a new 1-bit quantization strategy for the encoder outputs based on the underlying communication problem. Finally, we discuss the model complexity of the learned components during design time (training) and inference and show that the number of weights in the encoder can be reduced by 99.96 %.
[ "cs.IT", "cs.LG", "math.IT" ]
false
2305.09330
2023-05-16T10:07:41Z
Consumer-side Fairness in Recommender Systems: A Systematic Survey of Methods and Evaluation
[ "Bjørnar Vassøy", "Helge Langseth" ]
In the current landscape of ever-increasing levels of digitalization, we are facing major challenges pertaining to scalability. Recommender systems have become irreplaceable both for helping users navigate the increasing amounts of data and, conversely, aiding providers in marketing products to interested users. The growing awareness of discrimination in machine learning methods has recently motivated both academia and industry to research how fairness can be ensured in recommender systems. For recommender systems, such issues are well exemplified by occupation recommendation, where biases in historical data may lead to recommender systems relating one gender to lower wages or to the propagation of stereotypes. In particular, consumer-side fairness, which focuses on mitigating discrimination experienced by users of recommender systems, has seen a vast number of diverse approaches for addressing different types of discrimination. The nature of said discrimination depends on the setting and the applied fairness interpretation, of which there are many variations. This survey serves as a systematic overview and discussion of the current research on consumer-side fairness in recommender systems. To that end, a novel taxonomy based on high-level fairness interpretation is proposed and used to categorize the research and their proposed fairness evaluation metrics. Finally, we highlight some suggestions for the future direction of the field.
[ "cs.IR", "cs.AI", "cs.CY", "cs.LG" ]
false
2305.09348
2023-05-16T11:06:09Z
One-Shot Online Testing of Deep Neural Networks Based on Distribution Shift Detection
[ "Soyed Tuhin Ahmed", "Mehdi B. Tahoori" ]
Neural networks (NNs) are capable of learning complex patterns and relationships in data to make predictions with high accuracy, making them useful for various tasks. However, NNs are both computation-intensive and memory-intensive methods, making them challenging for edge applications. To accelerate the most common operations (matrix-vector multiplication) in NNs, hardware accelerator architectures such as computation-in-memory (CiM) with non-volatile memristive crossbars are utilized. Although they offer benefits such as power efficiency, parallelism, and nonvolatility, they suffer from various faults and variations, both during manufacturing and lifetime operations. This can lead to faulty computations and, in turn, degradation of post-mapping inference accuracy, which is unacceptable for many applications, including safety-critical applications. Therefore, proper testing of NN hardware accelerators is required. In this paper, we propose a \emph{one-shot} testing approach that can test NNs accelerated on memristive crossbars with only one test vector, making it very suitable for online testing applications. Our approach can consistently achieve $100\%$ fault coverage across several large topologies with up to $201$ layers and challenging tasks like semantic segmentation. Nevertheless, compared to existing methods, the fault coverage is improved by up to $24\%$, the memory overhead is only $0.0123$ MB, a reduction of up to $19980\times$ and the number of test vectors is reduced by $10000\times$.
[ "cs.LG", "cs.AI", "cs.ET" ]
false
2305.09536
2023-05-16T15:27:17Z
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them
[ "Lars Henry Berge Olsen", "Ingrid Kristine Glad", "Martin Jullum", "Kjersti Aas" ]
Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we focus on conditional Shapley values for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but produce the Shapley value explanations quickly once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations.
[ "stat.ML", "cs.LG", "stat.CO" ]
false
2305.09543
2023-05-16T15:37:32Z
EEG-based Sleep Staging with Hybrid Attention
[ "Xinliang Zhou", "Chenyu Liu", "Jiaping Xiao", "Yang Liu" ]
Sleep staging is critical for assessing sleep quality and diagnosing sleep disorders. However, capturing both the spatial and temporal relationships within electroencephalogram (EEG) signals during different sleep stages remains challenging. In this paper, we propose a novel framework called the Hybrid Attention EEG Sleep Staging (HASS) Framework. Specifically, we propose a well-designed spatio-temporal attention mechanism to adaptively assign weights to inter-channels and intra-channel EEG segments based on the spatio-temporal relationship of the brain during different sleep stages. Experiment results on the MASS and ISRUC datasets demonstrate that HASS can significantly improve typical sleep staging networks. Our proposed framework alleviates the difficulties of capturing the spatial-temporal relationship of EEG signals during sleep staging and holds promise for improving the accuracy and reliability of sleep assessment in both clinical and research settings.
[ "eess.SP", "cs.AI", "cs.LG" ]
false
2305.09579
2023-05-16T16:26:49Z
Private Everlasting Prediction
[ "Moni Naor", "Kobbi Nissim", "Uri Stemmer", "Chao Yan" ]
A private learner is trained on a sample of labeled points and generates a hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case with, e.g., learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019]. We explore prediction as an alternative to learning. Instead of putting forward a hypothesis, a predictor answers a stream of classification queries. Earlier work has considered a private prediction model with just a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and, furthermore, that it must use the queries for this modification, hence introducing potential privacy risks with respect to the queries themselves. We introduce private everlasting prediction taking into account the privacy of both the training set and the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model. The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions with constant size initial training sample, even when considered over infinite domains, whereas it is known that the sample complexity of privately learning threshold functions must grow as a function of the domain size and hence is impossible for infinite domains.
[ "cs.LG", "cs.CR", "cs.DS" ]
false
2305.09594
2023-05-16T16:47:02Z
HiNoVa: A Novel Open-Set Detection Method for Automating RF Device Authentication
[ "Luke Puppo", "Weng-Keen Wong", "Bechir Hamdaoui", "Abdurrahman Elmaghbub" ]
New capabilities in wireless network security have been enabled by deep learning, which leverages patterns in radio frequency (RF) data to identify and authenticate devices. Open-set detection is an area of deep learning that identifies samples captured from new devices during deployment that were not part of the training set. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. We introduce a novel open-set detection approach based on the patterns of the hidden state values within a Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) model. Our approach greatly improves the Area Under the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.
[ "cs.CR", "cs.LG", "eess.SP" ]
false
2305.09596
2023-05-16T16:51:07Z
Identification and Classification of Exoplanets Using Machine Learning Techniques
[ "Prithivraj G", "Alka Kumari" ]
NASA's Kepler Space Telescope has been instrumental in the task of finding the presence of exoplanets in our galaxy. This search has been supported by computational data analysis to identify exoplanets from the signals received by the Kepler telescope. In this paper, we consider building upon some existing work on exoplanet identification using residual networks for the data of the Kepler space telescope and its extended mission K2. This paper aims to explore how deep learning algorithms can help in classifying the presence of exoplanets with less amount of data in one case and a more extensive variety of data in another. In addition to the standard CNN-based method, we propose a Siamese architecture that is particularly useful in addressing classification in a low-data scenario. The CNN and ResNet algorithms achieved an average accuracy of 68% for three classes and 86% for two-class classification. However, for both the three and two classes, the Siamese algorithm achieved 99% accuracy.
[ "astro-ph.EP", "astro-ph.IM", "cs.LG", "physics.comp-ph" ]
false
2305.09619
2023-05-16T17:13:00Z
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization
[ "Daniel Pfrommer", "Max Simchowitz", "Tyler Westenbroek", "Nikolai Matni", "Stephen Tu" ]
A common pipeline in learning-based control is to iteratively estimate a model of system dynamics, and apply a trajectory optimization algorithm - e.g.~$\mathtt{iLQR}$ - on the learned model to minimize a target cost. This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems. We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing $\mathtt{iLQR}$-like policy updates. We demonstrate that this algorithm attains sample complexity polynomial in relevant problem parameters, and, by synthesizing locally stabilizing gains, overcomes exponential dependence in problem horizon. Experimental results validate the performance of our algorithm, and compare to natural deep-learning baselines.
[ "cs.LG", "math.OC", "stat.ML" ]
false
2305.09626
2023-05-16T17:27:34Z
Balancing Risk and Reward: An Automated Phased Release Strategy
[ "Yufan Li", "Jialiang Mao", "Iavor Bojinov" ]
Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a principled way requires selecting the proportion of units assigned to the new release in a way that balances the risk of an adverse effect with the need to iterate and learn from the experiment rapidly. In this paper, we formalize this problem and propose an algorithm that automatically determines the release percentage at each stage in the schedule, balancing the need to control risk while maximizing ramp-up speed. Our framework models the challenge as a constrained batched bandit problem that ensures that our pre-specified experimental budget is not depleted with high probability. Our proposed algorithm leverages an adaptive Bayesian approach in which the maximal number of units assigned to the treatment is determined by the posterior distribution, ensuring that the probability of depleting the remaining budget is low. Notably, our approach analytically solves the ramp sizes by inverting probability bounds, eliminating the need for challenging rare-event Monte Carlo simulation. It only requires computing means and variances of outcome subsets, making it highly efficient and parallelizable.
[ "stat.ML", "cs.LG", "stat.ME" ]
false
2305.09636
2023-05-16T17:41:25Z
SoundStorm: Efficient Parallel Audio Generation
[ "Zalán Borsos", "Matt Sharifi", "Damien Vincent", "Eugene Kharitonov", "Neil Zeghidour", "Marco Tagliasacchi" ]
We present SoundStorm, a model for efficient, non-autoregressive audio generation. SoundStorm receives as input the semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding to generate the tokens of a neural audio codec. Compared to the autoregressive generation approach of AudioLM, our model produces audio of the same quality and with higher consistency in voice and acoustic conditions, while being two orders of magnitude faster. SoundStorm generates 30 seconds of audio in 0.5 seconds on a TPU-v4. We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments, given a transcript annotated with speaker turns and a short prompt with the speakers' voices.
[ "cs.SD", "cs.LG", "eess.AS" ]
true
2305.09703
2023-05-16T11:38:19Z
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting
[ "Guojun Liang", "Prayag Tiwari", "Sławomir Nowaczyk", "Stefan Byttner", "Fernando Alonso-Fernandez" ]
Graph neural networks (GNNs), especially dynamic GNNs, have become a research hotspot in spatio-temporal forecasting problems. While many dynamic graph construction methods have been developed, relatively few of them explore the causal relationship between neighbour nodes. Thus, the resulting models lack strong explainability for the causal relationship between the neighbour nodes of the dynamically generated graphs, which can easily lead to a risk in subsequent decisions. Moreover, few of them consider the uncertainty and noise of dynamic graphs based on the time series datasets, which are ubiquitous in real-world graph structure networks. In this paper, we propose a novel Dynamic Diffusion-Variational Graph Neural Network (DVGNN) for spatio-temporal forecasting. For dynamic graph construction, an unsupervised generative model is devised. Two layers of graph convolutional network (GCN) are applied to calculate the posterior distribution of the latent node embeddings in the encoder stage. Then, a diffusion model is used to infer the dynamic link probability and reconstruct causal graphs in the decoder stage adaptively. The new loss function is derived theoretically, and the reparameterization trick is adopted in estimating the probability distribution of the dynamic graphs by Evidence Lower Bound during the backpropagation period. After obtaining the generated graphs, dynamic GCN and temporal attention are applied to predict future states. Experiments are conducted on four real-world datasets of different graph structures in different domains. The results demonstrate that the proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result while exhibiting higher robustness. Also, by F1-score and probability distribution analysis, we demonstrate that DVGNN better reflects the causal relationship and uncertainty of dynamic graphs.
[ "cs.LG", "cs.AI", "cs.SI" ]
false
2305.09705
2023-05-16T12:23:18Z
Random Edge Coding: One-Shot Bits-Back Coding of Large Labeled Graphs
[ "Daniel Severo", "James Townsend", "Ashish Khisti", "Alireza Makhzani" ]
We present a one-shot method for compressing large labeled graphs called Random Edge Coding. When paired with a parameter-free model based on P\'olya's Urn, the worst-case computational and memory complexities scale quasi-linearly and linearly with the number of observed edges, making it efficient on sparse graphs, and requires only integer arithmetic. Key to our method is bits-back coding, which is used to sample edges and vertices without replacement from the edge-list in a way that preserves the structure of the graph. Optimality is proven under a class of random graph models that are invariant to permutations of the edges and of vertices within an edge. Experiments indicate Random Edge Coding can achieve competitive compression performance on real-world network datasets and scales to graphs with millions of nodes and edges.
[ "cs.LG", "cs.IT", "math.IT" ]
false
2305.09729
2023-05-16T18:01:49Z
FedHGN: A Federated Framework for Heterogeneous Graph Neural Networks
[ "Xinyu Fu", "Irwin King" ]
Heterogeneous graph neural networks (HGNNs) can learn from typed and relational graph data more effectively than conventional GNNs. With larger parameter spaces, HGNNs may require more training data, which is often scarce in real-world applications due to privacy regulations (e.g., GDPR). Federated graph learning (FGL) enables multiple clients to train a GNN collaboratively without sharing their local data. However, existing FGL methods mainly focus on homogeneous GNNs or knowledge graph embeddings; few have considered heterogeneous graphs and HGNNs. In federated heterogeneous graph learning, clients may have private graph schemas. Conventional FL/FGL methods attempting to define a global HGNN model would violate schema privacy. To address these challenges, we propose FedHGN, a novel and general FGL framework for HGNNs. FedHGN adopts schema-weight decoupling to enable schema-agnostic knowledge sharing and employs coefficients alignment to stabilize the training process and improve HGNN performance. With better privacy preservation, FedHGN consistently outperforms local training and conventional FL methods on three widely adopted heterogeneous graph datasets with varying client numbers. The code is available at https://github.com/cynricfu/FedHGN .
[ "cs.LG", "cs.AI", "cs.DC", "cs.SI" ]
false
2305.09765
2023-05-16T19:34:05Z
OpenVR: Teleoperation for Manipulation
[ "Abraham George", "Alison Bartsch", "Amir Barati Farimani" ]
Across the robotics field, quality demonstrations are an integral part of many control pipelines. However, collecting high-quality demonstration trajectories remains time-consuming and difficult, often resulting in the number of demonstrations being the performance bottleneck. To address this issue, we present a method of Virtual Reality (VR) Teleoperation that uses an Oculus VR headset to teleoperate a Franka Emika Panda robot. Although other VR teleoperation methods exist, our code is open source, designed for readily available consumer hardware, easy to modify, agnostic to experimental setup, and simple to use.
[ "cs.RO", "cs.HC", "cs.LG" ]
false
2305.09842
2023-05-16T22:49:15Z
A Note on Dimensionality Reduction in Deep Neural Networks using Empirical Interpolation Method
[ "Harbir Antil", "Madhu Gupta", "Randy Price" ]
Empirical interpolation method (EIM) is a well-known technique to efficiently approximate parameterized functions. This paper proposes to use EIM algorithm to efficiently reduce the dimension of the training data within supervised machine learning. This is termed as DNN-EIM. Applications in data science (e.g., MNIST) and parameterized (and time-dependent) partial differential equations (PDEs) are considered. The proposed DNNs in case of classification are trained in parallel for each class. This approach is sequential, i.e., new classes can be added without having to retrain the network. In case of PDEs, a DNN is designed corresponding to each EIM point. Again, these networks can be trained in parallel, for each EIM point. In all cases, the parallel networks require fewer than ten times the number of training weights. Significant gains are observed in terms of training times, without sacrificing accuracy.
[ "cs.LG", "cs.NA", "math.NA", "68T07, 76B75, 93C20, 93C15" ]
false
2305.09856
2023-05-16T23:55:47Z
Keep It Simple: Fault Tolerance Evaluation of Federated Learning with Unreliable Clients
[ "Victoria Huang", "Shaleeza Sohail", "Michael Mayo", "Tania Lorido Botran", "Mark Rodrigues", "Chris Anderson", "Melanie Ooi" ]
Federated learning (FL), as an emerging artificial intelligence (AI) approach, enables decentralized model training across multiple devices without exposing their local training data. FL has been increasingly gaining popularity in both academia and industry. While research works have been proposed to improve the fault tolerance of FL, the real impact of unreliable devices (e.g., dropping out, misconfiguration, poor data quality) in real-world applications is not fully investigated. We carefully chose two representative, real-world classification problems with a limited numbers of clients to better analyze FL fault tolerance. Contrary to the intuition, simple FL algorithms can perform surprisingly well in the presence of unreliable clients.
[ "cs.LG", "cs.AI", "cs.DC" ]
false