arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2305.07182
2023-05-12T00:33:22Z
Boosting Value Decomposition via Unit-Wise Attentive State Representation for Cooperative Multi-Agent Reinforcement Learning
[ "Qingpeng Zhao", "Yuanyang Zhu", "Zichuan Liu", "Zhi Wang", "Chunlin Chen" ]
In cooperative multi-agent reinforcement learning (MARL), the environmental stochasticity and uncertainties will increase exponentially when the number of agents increases, which puts hard pressure on how to come up with a compact latent representation from partial observation for boosting value decomposition. To tackle these issues, we propose a simple yet powerful method that alleviates partial observability and efficiently promotes coordination by introducing the UNit-wise attentive State Representation (UNSR). In UNSR, each agent learns a compact and disentangled unit-wise state representation outputted from transformer blocks, and produces its local action-value function. The proposed UNSR is used to boost the value decomposition with a multi-head attention mechanism for producing efficient credit assignment in the mixing network, providing an efficient reasoning path between the individual value function and joint value function. Experimental results demonstrate that our method achieves superior performance and data efficiency compared to solid baselines on the StarCraft II micromanagement challenge. Additional ablation experiments also help identify the key factors contributing to the performance of UNSR.
[ "cs.MA", "cs.LG" ]
false
2305.07248
2023-05-12T04:47:02Z
Quantile-Based Deep Reinforcement Learning using Two-Timescale Policy Gradient Algorithms
[ "Jinyang Jiang", "Jiaqiao Hu", "Yijie Peng" ]
Classical reinforcement learning (RL) aims to optimize the expected cumulative reward. In this work, we consider the RL setting where the goal is to optimize the quantile of the cumulative reward. We parameterize the policy controlling actions by neural networks, and propose a novel policy gradient algorithm called Quantile-Based Policy Optimization (QPO) and its variant Quantile-Based Proximal Policy Optimization (QPPO) for solving deep RL problems with quantile objectives. QPO uses two coupled iterations running at different timescales for simultaneously updating quantiles and policy parameters, whereas QPPO is an off-policy version of QPO that allows multiple updates of parameters during one simulation episode, leading to improved algorithm efficiency. Our numerical results indicate that the proposed algorithms outperform the existing baseline algorithms under the quantile criterion.
[ "cs.LG", "cs.AI" ]
false
2305.07315
2023-05-12T08:40:46Z
$\partial\mathbb{B}$ nets: learning discrete functions by gradient descent
[ "Ian Wright" ]
$\partial\mathbb{B}$ nets are differentiable neural networks that learn discrete boolean-valued functions by gradient descent. $\partial\mathbb{B}$ nets have two semantically equivalent aspects: a differentiable soft-net, with real weights, and a non-differentiable hard-net, with boolean weights. We train the soft-net by backpropagation and then `harden' the learned weights to yield boolean weights that bind with the hard-net. The result is a learned discrete function. `Hardening' involves no loss of accuracy, unlike existing approaches to neural network binarization. Preliminary experiments demonstrate that $\partial\mathbb{B}$ nets achieve comparable performance on standard machine learning problems yet are compact (due to 1-bit weights) and interpretable (due to the logical nature of the learnt functions).
[ "cs.LG", "cs.NE", "I.2.6" ]
false
2305.07334
2023-05-12T09:26:26Z
Locking and Quacking: Stacking Bayesian model predictions by log-pooling and superposition
[ "Yuling Yao", "Luiz Max Carvalho", "Diego Mesquita", "Yann McLatchie" ]
Combining predictions from different models is a central problem in Bayesian inference and machine learning more broadly. Currently, these predictive distributions are almost exclusively combined using linear mixtures such as Bayesian model averaging, Bayesian stacking, and mixture of experts. Such linear mixtures impose idiosyncrasies that might be undesirable for some applications, such as multi-modality. While there exist alternative strategies (e.g. geometric bridge or superposition), optimising their parameters usually involves computing an intractable normalising constant repeatedly. We present two novel Bayesian model combination tools. These are generalisations of model stacking, but combine posterior densities by log-linear pooling (locking) and quantum superposition (quacking). To optimise model weights while avoiding the burden of normalising constants, we investigate the Hyvarinen score of the combined posterior predictions. We demonstrate locking with an illustrative example and discuss its practical application with importance sampling.
[ "stat.ML", "cs.LG" ]
false
2305.07367
2023-05-12T10:32:16Z
S-REINFORCE: A Neuro-Symbolic Policy Gradient Approach for Interpretable Reinforcement Learning
[ "Rajdeep Dutta", "Qincheng Wang", "Ankur Singh", "Dhruv Kumarjiguda", "Li Xiaoli", "Senthilnath Jayavelu" ]
This paper presents a novel RL algorithm, S-REINFORCE, which is designed to generate interpretable policies for dynamic decision-making tasks. The proposed algorithm leverages two types of function approximators, namely Neural Network (NN) and Symbolic Regressor (SR), to produce numerical and symbolic policies, respectively. The NN component learns to generate a numerical probability distribution over the possible actions using a policy gradient, while the SR component captures the functional form that relates the associated states with the action probabilities. The SR-generated policy expressions are then utilized through importance sampling to improve the rewards received during the learning process. We have tested the proposed S-REINFORCE algorithm on various dynamic decision-making problems with low and high dimensional action spaces, and the results demonstrate its effectiveness and impact in achieving interpretable solutions. By leveraging the strengths of both NN and SR, S-REINFORCE produces policies that are not only well-performing but also easy to interpret, making it an ideal choice for real-world applications where transparency and causality are crucial.
[ "cs.LG", "cs.AI" ]
false
2305.07408
2023-05-12T12:15:42Z
Distributed Gradient Descent for Functional Learning
[ "Zhan Yu", "Jun Fan", "Ding-Xuan Zhou" ]
In recent years, different types of distributed learning schemes have received increasing attention for their strong advantages in handling large-scale data information. In the information era, to face the big data challenges which stem from functional data analysis very recently, we propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space. Based on integral operator approaches, we provide the first theoretical understanding of the DGDFL algorithm in many different aspects in the literature. On the way of understanding DGDFL, firstly, a data-based gradient descent functional learning (GDFL) algorithm associated with a single-machine model is proposed and comprehensively studied. Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression. We further provide a semi-supervised DGDFL approach to weaken the restriction on the maximal number of local machines to ensure optimal rates. To our best knowledge, the DGDFL provides the first distributed iterative training approach to functional learning and enriches the stage of functional data analysis.
[ "stat.ML", "cs.LG" ]
false
2305.07416
2023-05-12T12:36:48Z
A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction
[ "Marion Neumeier", "Andreas Tollkühn", "Michael Botsch", "Wolfgang Utschick" ]
This work introduces the multidimensional Graph Fourier Transformation Neural Network (GFTNN) for long-term trajectory predictions on highways. Similar to Graph Neural Networks (GNNs), the GFTNN is a novel network architecture that operates on graph structures. While several GNNs lack discriminative power due to suboptimal aggregation schemes, the proposed model aggregates scenario properties through a powerful operation: the multidimensional Graph Fourier Transformation (GFT). The spatio-temporal vehicle interaction graph of a scenario is converted into a spectral scenario representation using the GFT. This beneficial representation is input to the prediction framework composed of a neural network and a descriptive decoder. Even though the proposed GFTNN does not include any recurrent element, it outperforms state-of-the-art models in the task of highway trajectory prediction. For experiments and evaluation, the publicly available datasets highD and NGSIM are used
[ "cs.LG", "cs.AI" ]
false
2305.07421
2023-05-12T12:40:08Z
Selective imitation on the basis of reward function similarity
[ "Max Taylor-Davies", "Stephanie Droop", "Christopher G. Lucas" ]
Imitation is a key component of human social behavior, and is widely used by both children and adults as a way to navigate uncertain or unfamiliar situations. But in an environment populated by multiple heterogeneous agents pursuing different goals or objectives, indiscriminate imitation is unlikely to be an effective strategy -- the imitator must instead determine who is most useful to copy. There are likely many factors that play into these judgements, depending on context and availability of information. Here we investigate the hypothesis that these decisions involve inferences about other agents' reward functions. We suggest that people preferentially imitate the behavior of others they deem to have similar reward functions to their own. We further argue that these inferences can be made on the basis of very sparse or indirect data, by leveraging an inductive bias toward positing the existence of different \textit{groups} or \textit{types} of people with similar reward functions, allowing learners to select imitation targets without direct evidence of alignment.
[ "q-bio.NC", "cs.LG" ]
false
2305.07430
2023-05-12T12:52:51Z
Expertise-based Weighting for Regression Models with Noisy Labels
[ "Milene Regina dos Santos", "Rafael Izbicki" ]
Regression methods assume that accurate labels are available for training. However, in certain scenarios, obtaining accurate labels may not be feasible, and relying on multiple specialists with differing opinions becomes necessary. Existing approaches addressing noisy labels often impose restrictive assumptions on the regression function. In contrast, this paper presents a novel, more flexible approach. Our method consists of two steps: estimating each labeler's expertise and combining their opinions using learned weights. We then regress the weighted average against the input features to build the prediction model. The proposed method is formally justified and empirically demonstrated to outperform existing techniques on simulated and real data. Furthermore, its flexibility enables the utilization of any machine learning technique in both steps. In summary, this method offers a simple, fast, and effective solution for training regression models with noisy labels derived from diverse expert opinions.
[ "stat.ML", "cs.LG" ]
false
2305.07446
2023-05-12T13:05:12Z
A Lightweight Domain Adversarial Neural Network Based on Knowledge Distillation for EEG-based Cross-subject Emotion Recognition
[ "Zhe Wang", "Yongxiong Wang", "Jiapeng Zhang", "Yiheng Tang", "Zhiqun Pan" ]
Individual differences of Electroencephalogram (EEG) could cause the domain shift which would significantly degrade the performance of cross-subject strategy. The domain adversarial neural networks (DANN), where the classification loss and domain loss jointly update the parameters of feature extractor, are adopted to deal with the domain shift. However, limited EEG data quantity and strong individual difference are challenges for the DANN with cumbersome feature extractor. In this work, we propose knowledge distillation (KD) based lightweight DANN to enhance cross-subject EEG-based emotion recognition. Specifically, the teacher model with strong context learning ability is utilized to learn complex temporal dynamics and spatial correlations of EEG, and robust lightweight student model is guided by the teacher model to learn more difficult domain-invariant features. In the feature-based KD framework, a transformer-based hierarchical temporalspatial learning model is served as the teacher model. The student model, which is composed of Bi-LSTM units, is a lightweight version of the teacher model. Hence, the student model could be supervised to mimic the robust feature representations of teacher model by leveraging complementary latent temporal features and spatial features. In the DANN-based cross-subject emotion recognition, we combine the obtained student model and a lightweight temporal-spatial feature interaction module as the feature extractor. And the feature aggregation is fed to the emotion classifier and domain classifier for domain-invariant feature learning. To verify the effectiveness of the proposed method, we conduct the subject-independent experiments on the public dataset DEAP with arousal and valence classification. The outstanding performance and t-SNE visualization of latent features verify the advantage and effectiveness of the proposed method.
[ "eess.SP", "cs.LG" ]
false
2305.07486
2023-05-12T13:56:33Z
Reduced Label Complexity For Tight $\ell_2$ Regression
[ "Alex Gittens", "Malik Magdon-Ismail" ]
Given data ${\rm X}\in\mathbb{R}^{n\times d}$ and labels $\mathbf{y}\in\mathbb{R}^{n}$ the goal is find $\mathbf{w}\in\mathbb{R}^d$ to minimize $\Vert{\rm X}\mathbf{w}-\mathbf{y}\Vert^2$. We give a polynomial algorithm that, \emph{oblivious to $\mathbf{y}$}, throws out $n/(d+\sqrt{n})$ data points and is a $(1+d/n)$-approximation to optimal in expectation. The motivation is tight approximation with reduced label complexity (number of labels revealed). We reduce label complexity by $\Omega(\sqrt{n})$. Open question: Can label complexity be reduced by $\Omega(n)$ with tight $(1+d/n)$-approximation?
[ "cs.LG", "cs.DS" ]
false
2305.07681
2023-05-12T09:55:34Z
ML-Based Teaching Systems: A Conceptual Framework
[ "Philipp Spitzer", "Niklas Kühl", "Daniel Heinz", "Gerhard Satzger" ]
As the shortage of skilled workers continues to be a pressing issue, exacerbated by demographic change, it is becoming a critical challenge for organizations to preserve the knowledge of retiring experts and to pass it on to novices. While this knowledge transfer has traditionally taken place through personal interaction, it lacks scalability and requires significant resources and time. IT-based teaching systems have addressed this scalability issue, but their development is still tedious and time-consuming. In this work, we investigate the potential of machine learning (ML) models to facilitate knowledge transfer in an organizational context, leading to more cost-effective IT-based teaching systems. Through a systematic literature review, we examine key concepts, themes, and dimensions to better understand and design ML-based teaching systems. To do so, we capture and consolidate the capabilities of ML models in IT-based teaching systems, inductively analyze relevant concepts in this context, and determine their interrelationships. We present our findings in the form of a review of the key concepts, themes, and dimensions to understand and inform on ML-based teaching systems. Building on these results, our work contributes to research on computer-supported cooperative work by conceptualizing how ML-based teaching systems can preserve expert knowledge and facilitate its transfer from SMEs to human novices. In this way, we shed light on this emerging subfield of human-computer interaction and serve to build an interdisciplinary research agenda.
[ "cs.HC", "cs.LG" ]
false
2305.07685
2023-05-12T13:13:55Z
Synthetic data generation for a longitudinal cohort study -- Evaluation, method extension and reproduction of published data analysis results
[ "Lisa Kühnel", "Julian Schneider", "Ines Perrar", "Tim Adams", "Fabian Prasser", "Ute Nöthlings", "Holger Fröhlich", "Juliane Fluck" ]
Access to individual-level health data is essential for gaining new insights and advancing science. In particular, modern methods based on artificial intelligence rely on the availability of and access to large datasets. In the health sector, access to individual-level data is often challenging due to privacy concerns. A promising alternative is the generation of fully synthetic data, i.e. data generated through a randomised process that have similar statistical properties as the original data, but do not have a one-to-one correspondence with the original individual-level records. In this study, we use a state-of-the-art synthetic data generation method and perform in-depth quality analyses of the generated data for a specific use case in the field of nutrition. We demonstrate the need for careful analyses of synthetic data that go beyond descriptive statistics and provide valuable insights into how to realise the full potential of synthetic datasets. By extending the methods, but also by thoroughly analysing the effects of sampling from a trained model, we are able to largely reproduce significant real-world analysis results in the chosen use case.
[ "stat.ME", "cs.LG" ]
false
2305.07731
2023-05-12T19:00:17Z
Predicting COVID-19 pandemic by spatio-temporal graph neural networks: A New Zealand's study
[ "Viet Bach Nguyen", "Truong Son Hy", "Long Tran-Thanh", "Nhung Nghiem" ]
Modeling and simulations of pandemic dynamics play an essential role in understanding and addressing the spreading of highly infectious diseases such as COVID-19. In this work, we propose a novel deep learning architecture named Attention-based Multiresolution Graph Neural Networks (ATMGNN) that learns to combine the spatial graph information, i.e. geographical data, with the temporal information, i.e. timeseries data of number of COVID-19 cases, to predict the future dynamics of the pandemic. The key innovation is that our method can capture the multiscale structures of the spatial graph via a learning to cluster algorithm in a data-driven manner. This allows our architecture to learn to pick up either local or global signals of a pandemic, and model both the long-range spatial and temporal dependencies. Importantly, we collected and assembled a new dataset for New Zealand. We established a comprehensive benchmark of statistical methods, temporal architectures, graph neural networks along with our spatio-temporal model. We also incorporated socioeconomic cross-sectional data to further enhance our prediction. Our proposed model have shown highly robust predictions and outperformed all other baselines in various metrics for our new dataset of New Zealand along with existing datasets of England, France, Italy and Spain. For a future work, we plan to extend our work for real-time prediction and global scale. Our data and source code are publicly available at https://github.com/HySonLab/pandemic_tgnn
[ "cs.LG", "physics.soc-ph" ]
false
2305.07733
2023-05-12T19:11:46Z
Measuring Surprise in the Wild
[ "Azadeh Dinparastdjadid", "Isaac Supeene", "Johan Engstrom" ]
The quantitative measurement of how and when we experience surprise has mostly remained limited to laboratory studies, and its extension to naturalistic settings has been challenging. Here we demonstrate, for the first time, how computational models of surprise rooted in cognitive science and neuroscience combined with state-of-the-art machine learned generative models can be used to detect surprising human behavior in complex, dynamic environments like road traffic. In traffic safety, such models can support the identification of traffic conflicts, modeling of road user response time, and driving behavior evaluation for both human and autonomous drivers. We also present novel approaches to quantify surprise and use naturalistic driving scenarios to demonstrate a number of advantages over existing surprise measures from the literature. Modeling surprising behavior using learned generative models is a novel concept that can be generalized beyond traffic safety to any dynamic real-world environment.
[ "cs.LG", "cs.HC" ]
false
2305.07782
2023-05-12T22:03:14Z
Revisiting Matching Pursuit: Beyond Approximate Submodularity
[ "Ehsan Tohidi", "Mario Coutino", "David Gesbert" ]
We study the problem of selecting a subset of vectors from a large set, to obtain the best signal representation over a family of functions. Although greedy methods have been widely used for tackling this problem and many of those have been analyzed under the lens of (weak) submodularity, none of these algorithms are explicitly devised using such a functional property. Here, we revisit the vector-selection problem and introduce a function which is shown to be submodular in expectation. This function does not only guarantee near-optimality through a greedy algorithm in expectation, but also alleviates the existing deficiencies in commonly used matching pursuit (MP) algorithms. We further show the relation between the single-point-estimate version of the proposed greedy algorithm and MP variants. Our theoretical results are supported by numerical experiments for the angle of arrival estimation problem, a typical signal representation task; the experiments demonstrate the benefits of the proposed method with respect to the traditional MP algorithms.
[ "eess.SP", "cs.LG" ]
false
2305.07791
2023-05-12T22:50:53Z
Using Deepfake Technologies for Word Emphasis Detection
[ "Eran Kaufman", "Lee-Ad Gottlieb" ]
In this work, we consider the task of automated emphasis detection for spoken language. This problem is challenging in that emphasis is affected by the particularities of speech of the subject, for example the subject accent, dialect or voice. To address this task, we propose to utilize deep fake technology to produce an emphasis devoid speech for this speaker. This requires extracting the text of the spoken voice, and then using a voice sample from the same speaker to produce emphasis devoid speech for this task. By comparing the generated speech with the spoken voice, we are able to isolate patterns of emphasis which are relatively easy to detect.
[ "cs.LG", "cs.AI" ]
false
2305.10347
2023-05-12T13:30:06Z
Subject-based Non-contrastive Self-Supervised Learning for ECG Signal Processing
[ "Adrian Atienza", "Jakob Bardram", "Sadasivan Puthusserypady" ]
Extracting information from the electrocardiography (ECG) signal is an essential step in the design of digital health technologies in cardiology. In recent years, several machine learning (ML) algorithms for automatic extraction of information in ECG have been proposed. Supervised learning methods have successfully been used to identify specific aspects in the signal, like detection of rhythm disorders (arrhythmias). Self-supervised learning (SSL) methods, on the other hand, can be used to extract all the features contained in the data. The model is optimized without any specific goal and learns from the data itself. By adapting state-of-the-art computer vision methodologies to the signal processing domain, a few SSL approaches have been reported recently for ECG processing. However, such SSL methods require either data augmentation or negative pairs, which limits the method to only look for similarities between two ECG inputs, either two versions of the same signal or two signals from the same subject. This leads to models that are very effective at extracting characteristics that are stable in a subject, such as gender or age. But they are not successful at capturing changes within the ECG recording that can explain dynamic aspects, like different arrhythmias or different sleep stages. In this work, we introduce the first SSL method that uses neither data augmentation nor negative pairs for understanding ECG signals, and still, achieves comparable quality representations. As a result, it is possible to design a SSL method that not only captures similarities between two inputs, but also captures dissimilarities for a complete understanding of the data. In addition, a model based on transformer blocks is presented, which produces better results than a model based on convolutional layers (XResNet50) with almost the same number of parameters.
[ "eess.SP", "cs.LG" ]
false
2305.11889
2023-05-12T01:55:13Z
An Automated Power Conservation System (APCS) using Particle Photon and Smartphone
[ "Chandra Sekhar Sanaboina", "Harish Bommidi" ]
Nowadays, people use electricity in all aspects of their lives so that electricity consumption increases gradually. There can be wastage of electricity due to various reasons, such as human negligence, daylighting, etc. Hence, conservation of energy is the need of the day. This paper deals with the fabrication of an "Automated Power Conservation System (APCS)" that has multiple benefits like saving on power consumption there by saving on electricity bills of the organization, eliminating human involvement and manpower which is often required to manually toggle the lights and electrical devices on/off, and last but most importantly conserve the precious natural resources by reducing electrical energy consumption. Two IR sensors are used in this project and these two sensors are used for detecting the presence of a person in the classroom. When the existence of the person is detected by the APCS it automatically turns on the fans and lights in that classroom and during the absence they will be automatically turned off, thus paving the easiest way to conserve power. This hardware is integrated with the Android app, where the user can get data on his smartphone regarding the number of fans and lights that are turned on at a particular instance of time. The user can also switch on/off the fans and lights from anywhere in the world by using the Android App.
[ "cs.HC", "cs.LG" ]
false
2305.18305
2023-05-12T11:05:59Z
High Accuracy and Low Regret for User-Cold-Start Using Latent Bandits
[ "David Young", "Douglas Leith" ]
We develop a novel latent-bandit algorithm for tackling the cold-start problem for new users joining a recommender system. This new algorithm significantly outperforms the state of the art, simultaneously achieving both higher accuracy and lower regret.
[ "cs.IR", "cs.LG" ]
false
2305.07216
2023-05-12T03:13:37Z
Versatile Audio-Visual Learning for Handling Single and Multi Modalities in Emotion Regression and Classification Tasks
[ "Lucas Goncalves", "Seong-Gyun Leem", "Wei-Cheng Lin", "Berrak Sisman", "Carlos Busso" ]
Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibility in a multimodal emotion recognition system is difficult due to the inherent challenges in accurately interpreting and integrating varied data sources. It is also a challenge to robustly handle missing or partial information while allowing direct switch between regression and classification tasks. This study proposes a \emph{versatile audio-visual learning} (VAVL) framework for handling unimodal and multimodal systems for emotion regression and emotion classification tasks. We implement an audio-visual framework that can be trained even when audio and visual paired data is not available for part of the training set (i.e., audio only or only video is present). We achieve this effective representation learning with audio-visual shared layers, residual connections over shared layers, and a unimodal reconstruction task. Our experimental results reveal that our architecture significantly outperforms strong baselines on both the CREMA-D and MSP-IMPROV corpora. Notably, VAVL attains a new state-of-the-art performance in the emotional attribute prediction task on the MSP-IMPROV corpus. Code available at: https://github.com/ilucasgoncalves/VAVL
[ "cs.LG", "cs.MM", "cs.SD", "eess.AS" ]
false
2305.07241
2023-05-12T04:12:12Z
On the Optimality of Misspecified Kernel Ridge Regression
[ "Haobo Zhang", "Yicheng Li", "Weihao Lu", "Qian Lin" ]
In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\|f_{\rho}^{*}\|_{L^{\infty}}<\infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0}\in (0,1)$ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.
[ "cs.LG", "math.ST", "stat.TH" ]
false
2305.07316
2023-05-12T08:43:28Z
Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces
[ "Fateme Abbasi", "Sandip Banerjee", "Jarosław Byrka", "Parinya Chalermsook", "Ameet Gadekar", "Kamyar Khodamoradi", "Dániel Marx", "Roohani Sharma", "Joachim Spoerhase" ]
We consider the well-studied Robust $(k, z)$-Clustering problem, which generalizes the classic $k$-Median, $k$-Means, and $k$-Center problems. Given a constant $z\ge 1$, the input to Robust $(k, z)$-Clustering is a set $P$ of $n$ weighted points in a metric space $(M,\delta)$ and a positive integer $k$. Further, each point belongs to one (or more) of the $m$ many different groups $S_1,S_2,\ldots,S_m$. Our goal is to find a set $X$ of $k$ centers such that $\max_{i \in [m]} \sum_{p \in S_i} w(p) \delta(p,X)^z$ is minimized. This problem arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness. For polynomial time computation, an approximation factor of $O(\log m/\log\log m)$ is known [Makarychev, Vakilian, COLT $2021$], which is tight under a plausible complexity assumption even in the line metrics. For FPT time, there is a $(3^z+\epsilon)$-approximation algorithm, which is tight under GAP-ETH [Goyal, Jaiswal, Inf. Proc. Letters, 2023]. Motivated by the tight lower bounds for general discrete metrics, we focus on \emph{geometric} spaces such as the (discrete) high-dimensional Euclidean setting and metrics of low doubling dimension, which play an important role in data analysis applications. First, for a universal constant $\eta_0 >0.0006$, we devise a $3^z(1-\eta_{0})$-factor FPT approximation algorithm for discrete high-dimensional Euclidean spaces thereby bypassing the lower bound for general metrics. We complement this result by showing that even the special case of $k$-Center in dimension $\Theta(\log n)$ is $(\sqrt{3/2}- o(1))$-hard to approximate for FPT algorithms. Finally, we complete the FPT approximation landscape by designing an FPT $(1+\epsilon)$-approximation scheme (EPAS) for the metric of sub-logarithmic doubling dimension.
[ "cs.DS", "cs.CG", "cs.LG" ]
false
2305.07415
2023-05-12T12:34:07Z
Comparison of machine learning models applied on anonymized data with different techniques
[ "Judith Sáinz-Pardo Díaz", "Álvaro López García" ]
Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the classical k-anonymity or $\ell$-diversity. However, the application of these methods is directly connected to a reduction of their utility in prediction and decision making tasks. In this work we study four classical machine learning methods currently used for classification purposes in order to analyze the results as a function of the anonymization techniques applied and the parameters selected for each of them. The performance of these models is studied when varying the value of k for k-anonymity and additional tools such as $\ell$-diversity, t-closeness and $\delta$-disclosure privacy are also deployed on the well-known adult dataset.
[ "cs.LG", "cs.CR", "cs.DB" ]
false
2305.07487
2023-05-12T13:58:31Z
Identify, Estimate and Bound the Uncertainty of Reinforcement Learning for Autonomous Driving
[ "Weitao Zhou", "Zhong Cao", "Nanshan Deng", "Kun Jiang", "Diange Yang" ]
Deep reinforcement learning (DRL) has emerged as a promising approach for developing more intelligent autonomous vehicles (AVs). A typical DRL application on AVs is to train a neural network-based driving policy. However, the black-box nature of neural networks can result in unpredictable decision failures, making such AVs unreliable. To this end, this work proposes a method to identify and protect unreliable decisions of a DRL driving policy. The basic idea is to estimate and constrain the policy's performance uncertainty, which quantifies potential performance drop due to insufficient training data or network fitting errors. By constraining the uncertainty, the DRL model's performance is always greater than that of a baseline policy. The uncertainty caused by insufficient data is estimated by the bootstrapped method. Then, the uncertainty caused by the network fitting error is estimated using an ensemble network. Finally, a baseline policy is added as the performance lower bound to avoid potential decision failures. The overall framework is called uncertainty-bound reinforcement learning (UBRL). The proposed UBRL is evaluated on DRL policies with different amounts of training data, taking an unprotected left-turn driving case as an example. The result shows that the UBRL method can identify potentially unreliable decisions of DRL policy. The UBRL guarantees to outperform baseline policy even when the DRL policy is not well-trained and has high uncertainty. Meanwhile, the performance of UBRL improves with more training data. Such a method is valuable for the DRL application on real-road driving and provides a metric to evaluate a DRL policy.
[ "cs.AI", "cs.LG", "cs.RO" ]
false
2305.07489
2023-05-12T14:00:26Z
Benchmarks and leaderboards for sound demixing tasks
[ "Roman Solovyev", "Alexander Stempkovskiy", "Tatiana Habruseva" ]
Music demixing is the task of separating different tracks from the given single audio signal into components, such as drums, bass, and vocals from the rest of the accompaniment. Separation of sources is useful for a range of areas, including entertainment and hearing aids. In this paper, we introduce two new benchmarks for the sound source separation tasks and compare popular models for sound demixing, as well as their ensembles, on these benchmarks. For the models' assessments, we provide the leaderboard at https://mvsep.com/quality_checker/, giving a comparison for a range of models. The new benchmark datasets are available for download. We also develop a novel approach for audio separation, based on the ensembling of different models that are suited best for the particular stem. The proposed solution was evaluated in the context of the Music Demixing Challenge 2023 and achieved top results in different tracks of the challenge. The code and the approach are open-sourced on GitHub.
[ "cs.SD", "cs.LG", "eess.AS" ]
false
2305.07511
2023-05-12T14:25:42Z
eXplainable Artificial Intelligence on Medical Images: A Survey
[ "Matteus Vargas Simão da Silva", "Rodrigo Reis Arrais", "Jhessica Victoria Santos da Silva", "Felipe Souza Tânios", "Mateus Antonio Chinelatto", "Natalia Backhaus Pereira", "Renata De Paris", "Lucas Cesar Ferreira Domingos", "Rodrigo Dória Villaça", "Vitor Lopes Fabris", "Nayara Rossi Brito da Silva", "Ana Claudia Akemi Matsuki de Faria", "Jose Victor Nogueira Alves da Silva", "Fabiana Cristina Queiroz de Oliveira Marucci", "Francisco Alves de Souza Neto", "Danilo Xavier Silva", "Vitor Yukio Kondo", "Claudio Filipi Gonçalves dos Santos" ]
Over the last few years, the number of works about deep learning applied to the medical field has increased enormously. The necessity of a rigorous assessment of these models is required to explain these results to all people involved in medical exams. A recent field in the machine learning area is explainable artificial intelligence, also known as XAI, which targets to explain the results of such black box models to permit the desired assessment. This survey analyses several recent studies in the XAI field applied to medical diagnosis research, allowing some explainability of the machine learning results in several different diseases, such as cancers and COVID-19.
[ "cs.LG", "cs.AI", "cs.CY", "eess.IV" ]
false
2305.07612
2023-05-12T17:02:43Z
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
[ "Yutong He", "Xinmeng Huang", "Yiming Chen", "Wotao Yin", "Kun Yuan" ]
Communication compression is an essential strategy for alleviating communication overhead by reducing the volume of information exchanged between computing nodes in large-scale distributed stochastic optimization. Although numerous algorithms with convergence guarantees have been obtained, the optimal performance limit under communication compression remains unclear. In this paper, we investigate the performance limit of distributed stochastic optimization algorithms employing communication compression. We focus on two main types of compressors, unbiased and contractive, and address the best-possible convergence rates one can obtain with these compressors. We establish the lower bounds for the convergence rates of distributed stochastic optimization in six different settings, combining strongly-convex, generally-convex, or non-convex functions with unbiased or contractive compressor types. To bridge the gap between lower bounds and existing algorithms' rates, we propose NEOLITHIC, a nearly optimal algorithm with compression that achieves the established lower bounds up to logarithmic factors under mild conditions. Extensive experimental results support our theoretical findings. This work provides insights into the theoretical limitations of existing compressors and motivates further research into fundamentally new compressor properties.
[ "cs.LG", "cs.DC", "math.OC" ]
false
2305.07633
2023-05-12T17:38:24Z
Zero-shot Item-based Recommendation via Multi-task Product Knowledge Graph Pre-Training
[ "Ziwei Fan", "Zhiwei Liu", "Shelby Heinecke", "Jianguo Zhang", "Huan Wang", "Caiming Xiong", "Philip S. Yu" ]
Existing recommender systems face difficulties with zero-shot items, i.e. items that have no historical interactions with users during the training stage. Though recent works extract universal item representation via pre-trained language models (PLMs), they ignore the crucial item relationships. This paper presents a novel paradigm for the Zero-Shot Item-based Recommendation (ZSIR) task, which pre-trains a model on product knowledge graph (PKG) to refine the item features from PLMs. We identify three challenges for pre-training PKG, which are multi-type relations in PKG, semantic divergence between item generic information and relations and domain discrepancy from PKG to downstream ZSIR task. We address the challenges by proposing four pre-training tasks and novel task-oriented adaptation (ToA) layers. Moreover, this paper discusses how to fine-tune the model on new recommendation task such that the ToA layers are adapted to ZSIR task. Comprehensive experiments on 18 markets dataset are conducted to verify the effectiveness of the proposed model in both knowledge prediction and ZSIR task.
[ "cs.IR", "cs.AI", "cs.LG" ]
false
2305.07678
2023-05-12T03:56:25Z
Exploring the Rate-Distortion-Complexity Optimization in Neural Image Compression
[ "Yixin Gao", "Runsen Feng", "Zongyu Guo", "Zhibo Chen" ]
Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate-distortion performance. However, most of them suffer from significantly longer decoding times, which hinders the practical applications of neural image codecs. This issue is especially pronounced when employing an effective yet time-consuming autoregressive context model since it would increase entropy decoding time by orders of magnitude. In this paper, unlike most previous works that pursue optimal RD performance while temporally overlooking the coding complexity, we make a systematical investigation on the rate-distortion-complexity (RDC) optimization in neural image compression. By quantifying the decoding complexity as a factor in the optimization goal, we are now able to precisely control the RDC trade-off and then demonstrate how the rate-distortion performance of neural image codecs could adapt to various complexity demands. Going beyond the investigation of RDC optimization, a variable-complexity neural codec is designed to leverage the spatial dependencies adaptively according to industrial demands, which supports fine-grained complexity adjustment by balancing the RDC tradeoff. By implementing this scheme in a powerful base model, we demonstrate the feasibility and flexibility of RDC optimization for neural image codecs.
[ "eess.IV", "cs.IT", "cs.LG", "math.IT" ]
false
2305.07715
2023-05-12T18:14:21Z
Optimal signal propagation in ResNets through residual scaling
[ "Kirsten Fischer", "David Dahmen", "Moritz Helias" ]
Residual networks (ResNets) have significantly better trainability and thus performance than feed-forward networks at large depth. Introducing skip connections facilitates signal propagation to deeper layers. In addition, previous works found that adding a scaling parameter for the residual branch further improves generalization performance. While they empirically identified a particularly beneficial range of values for this scaling parameter, the associated performance improvement and its universality across network hyperparameters yet need to be understood. For feed-forward networks (FFNets), finite-size theories have led to important insights with regard to signal propagation and hyperparameter tuning. We here derive a systematic finite-size theory for ResNets to study signal propagation and its dependence on the scaling for the residual branch. We derive analytical expressions for the response function, a measure for the network's sensitivity to inputs, and show that for deep networks the empirically found values for the scaling parameter lie within the range of maximal sensitivity. Furthermore, we obtain an analytical expression for the optimal scaling parameter that depends only weakly on other network hyperparameters, such as the weight variance, thereby explaining its universality across hyperparameters. Overall, this work provides a framework for theory-guided optimal scaling in ResNets and, more generally, provides the theoretical framework to study ResNets at finite widths.
[ "cond-mat.dis-nn", "cs.LG", "stat.ML" ]
false
2305.08872
2023-05-12T17:04:24Z
AMULET: Adaptive Matrix-Multiplication-Like Tasks
[ "Junyoung Kim", "Kenneth Ross", "Eric Sedlar", "Lukas Stadler" ]
Many useful tasks in data science and machine learning applications can be written as simple variations of matrix multiplication. However, users have difficulty performing such tasks as existing matrix/vector libraries support only a limited class of computations hand-tuned for each unique hardware platform. Users can alternatively write the task as a simple nested loop but current compilers are not sophisticated enough to generate fast code for the task written in this way. To address these issues, we extend an open-source compiler to recognize and optimize these matrix multiplication-like tasks. Our framework, called Amulet, uses both database-style and compiler optimization techniques to generate fast code tailored to its execution environment. We show through experiments that Amulet achieves speedups on a variety of matrix multiplication-like tasks compared to existing compilers. For large matrices Amulet typically performs within 15% of hand-tuned matrix multiplication libraries, while handling a much broader class of computations.
[ "cs.PL", "cs.DB", "cs.LG" ]
false
2305.08874
2023-05-12T19:23:21Z
Online machine-learning forecast uncertainty estimation for sequential data assimilation
[ "Maximiliano A. Sacco", "Manuel Pulido", "Juan J. Ruiz", "Pierre Tandeo" ]
Quantifying forecast uncertainty is a key aspect of state-of-the-art numerical weather prediction and data assimilation systems. Ensemble-based data assimilation systems incorporate state-dependent uncertainty quantification based on multiple model integrations. However, this approach is demanding in terms of computations and development. In this work a machine learning method is presented based on convolutional neural networks that estimates the state-dependent forecast uncertainty represented by the forecast error covariance matrix using a single dynamical model integration. This is achieved by the use of a loss function that takes into account the fact that the forecast errors are heterodastic. The performance of this approach is examined within a hybrid data assimilation method that combines a Kalman-like analysis update and the machine learning based estimation of a state-dependent forecast error covariance matrix. Observing system simulation experiments are conducted using the Lorenz'96 model as a proof-of-concept. The promising results show that the machine learning method is able to predict precise values of the forecast covariance matrix in relatively high-dimensional states. Moreover, the hybrid data assimilation method shows similar performance to the ensemble Kalman filter outperforming it when the ensembles are relatively small.
[ "physics.ao-ph", "cs.AI", "cs.LG" ]
false
2307.11685
2023-05-12T02:41:11Z
Towards Generalizable Reinforcement Learning for Trade Execution
[ "Chuheng Zhang", "Yitong Duan", "Xiaoyu Chen", "Jianyu Chen", "Jian Li", "Li Zhao" ]
Optimized trade execution is to sell (or buy) a given amount of assets in a given time with the lowest possible trading cost. Recently, reinforcement learning (RL) has been applied to optimized trade execution to learn smarter policies from market data. However, we find that many existing RL methods exhibit considerable overfitting which prevents them from real deployment. In this paper, we provide an extensive study on the overfitting problem in optimized trade execution. First, we model the optimized trade execution as offline RL with dynamic context (ORDC), where the context represents market variables that cannot be influenced by the trading policy and are collected in an offline manner. Under this framework, we derive the generalization bound and find that the overfitting issue is caused by large context space and limited context samples in the offline setting. Accordingly, we propose to learn compact representations for context to address the overfitting problem, either by leveraging prior knowledge or in an end-to-end manner. To evaluate our algorithms, we also implement a carefully designed simulator based on historical limit order book (LOB) data to provide a high-fidelity benchmark for different algorithms. Our experiments on the high-fidelity simulator demonstrate that our algorithms can effectively alleviate overfitting and achieve better performance.
[ "q-fin.TR", "cs.LG", "stat.ML" ]
false
2305.07751
2023-05-12T20:35:10Z
Private and Communication-Efficient Algorithms for Entropy Estimation
[ "Gecia Bravo-Hermsdorff", "Róbert Busa-Fekete", "Mohammad Ghavamzadeh", "Andres Muñoz Medina", "Umar Syed" ]
Modern statistical estimation is often performed in a distributed setting where each sample belongs to a single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their samples, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating several popular measures of the entropy of a distribution. All of our algorithms have constant communication cost and satisfy local differential privacy. For a joint distribution over many variables whose conditional independence is given by a tree, we describe algorithms for estimating Shannon entropy that require a number of samples that is linear in the number of variables, compared to the quadratic sample complexity of prior work. We also describe an algorithm for estimating Gini entropy whose sample complexity has no dependence on the support size of the distribution and can be implemented using a single round of concurrent communication between the users and the server. In contrast, the previously best-known algorithm has high communication cost and requires the server to facilitate interaction between the users. Finally, we describe an algorithm for estimating collision entropy that generalizes the best known algorithm to the private and communication-efficient setting.
[ "cs.LG", "cs.CR", "cs.IT", "math.IT", "math.ST", "stat.TH" ]
false
2305.07825
2023-05-13T02:46:41Z
Student Classroom Behavior Detection based on YOLOv7-BRA and Multi-Model Fusion
[ "Fan Yang", "Tao Wang", "Xiaofei Wang" ]
Accurately detecting student behavior in classroom videos can aid in analyzing their classroom performance and improving teaching effectiveness. However, the current accuracy rate in behavior detection is low. To address this challenge, we propose the Student Classroom Behavior Detection system based on based on YOLOv7-BRA (YOLOv7 with Bi-level Routing Attention ). We identified eight different behavior patterns, including standing, sitting, speaking, listening, walking, raising hands, reading, and writing. We constructed a dataset, which contained 11,248 labels and 4,001 images, with an emphasis on the common behavior of raising hands in a classroom setting (Student Classroom Behavior dataset, SCB-Dataset). To improve detection accuracy, we added the biformer attention module to the YOLOv7 network. Finally, we fused the results from YOLOv7 CrowdHuman, SlowFast, and DeepSort models to obtain student classroom behavior data. We conducted experiments on the SCB-Dataset, and YOLOv7-BRA achieved an [email protected] of 87.1%, resulting in a 2.2% improvement over previous results. Our SCB-dataset can be downloaded from: https://github.com/Whiffe/SCB-datase
[ "cs.CV" ]
false
2305.07840
2023-05-13T05:27:36Z
CEMFormer: Learning to Predict Driver Intentions from In-Cabin and External Cameras via Spatial-Temporal Transformers
[ "Yunsheng Ma", "Wenqian Ye", "Xu Cao", "Amr Abdelraouf", "Kyungtae Han", "Rohit Gupta", "Ziran Wang" ]
Driver intention prediction seeks to anticipate drivers' actions by analyzing their behaviors with respect to surrounding traffic environments. Existing approaches primarily focus on late-fusion techniques, and neglect the importance of maintaining consistency between predictions and prevailing driving contexts. In this paper, we introduce a new framework called Cross-View Episodic Memory Transformer (CEMFormer), which employs spatio-temporal transformers to learn unified memory representations for an improved driver intention prediction. Specifically, we develop a spatial-temporal encoder to integrate information from both in-cabin and external camera views, along with episodic memory representations to continuously fuse historical data. Furthermore, we propose a novel context-consistency loss that incorporates driving context as an auxiliary supervision signal to improve prediction performance. Comprehensive experiments on the Brain4Cars dataset demonstrate that CEMFormer consistently outperforms existing state-of-the-art methods in driver intention prediction.
[ "cs.CV" ]
false
2305.07853
2023-05-13T07:08:48Z
EV-MGRFlowNet: Motion-Guided Recurrent Network for Unsupervised Event-based Optical Flow with Hybrid Motion-Compensation Loss
[ "Hao Zhuang", "Xinjie Huang", "Kuanxu Hou", "Delei Kong", "Chenming Hu", "Zheng Fang" ]
Event cameras offer promising properties, such as high temporal resolution and high dynamic range. These benefits have been utilized into many machine vision tasks, especially optical flow estimation. Currently, most existing event-based works use deep learning to estimate optical flow. However, their networks have not fully exploited prior hidden states and motion flows. Additionally, their supervision strategy has not fully leveraged the geometric constraints of event data to unlock the potential of networks. In this paper, we propose EV-MGRFlowNet, an unsupervised event-based optical flow estimation pipeline with motion-guided recurrent networks using a hybrid motion-compensation loss. First, we propose a feature-enhanced recurrent encoder network (FERE-Net) which fully utilizes prior hidden states to obtain multi-level motion features. Then, we propose a flow-guided decoder network (FGD-Net) to integrate prior motion flows. Finally, we design a hybrid motion-compensation loss (HMC-Loss) to strengthen geometric constraints for the more accurate alignment of events. Experimental results show that our method outperforms the current state-of-the-art (SOTA) method on the MVSEC dataset, with an average reduction of approximately 22.71% in average endpoint error (AEE). To our knowledge, our method ranks first among unsupervised learning-based methods.
[ "cs.CV" ]
false
2305.07857
2023-05-13T07:51:35Z
AURA : Automatic Mask Generator using Randomized Input Sampling for Object Removal
[ "Changsuk Oh", "Dongseok Shim", "H. Jin Kim" ]
The objective of the image inpainting task is to fill missing regions of an image in a visually plausible way. Recently, deep-learning-based image inpainting networks have generated outstanding results, and some utilize their models as object removers by masking unwanted objects in an image. However, while trying to better remove objects using their networks, the previous works pay less attention to the importance of the input mask. In this paper, we focus on generating the input mask to better remove objects using the off-the-shelf image inpainting network. We propose an automatic mask generator inspired by the explainable AI (XAI) method, whose output can better remove objects than a semantic segmentation mask. The proposed method generates an importance map using randomly sampled input masks and quantitatively estimated scores of the completed images obtained from the random masks. The output mask is selected by a judge module among the candidate masks which are generated from the importance map. We design the judge module to quantitatively estimate the quality of the object removal results. In addition, we empirically find that the evaluation methods used in the previous works reporting object removal results are not appropriate for estimating the performance of an object remover. Therefore, we propose new evaluation metrics (FID$^*$ and U-IDS$^*$) to properly evaluate the quality of object removers. Experiments confirm that our method shows better performance in removing target class objects than the masks generated from the semantic segmentation maps, and the two proposed metrics make judgments consistent with humans.
[ "cs.CV" ]
false
2305.07904
2023-05-13T12:06:09Z
Temporal Consistent Automatic Video Colorization via Semantic Correspondence
[ "Yu Zhang", "Siqi Chen", "Mingdao Wang", "Xianlin Zhang", "Chuang Zhu", "Yue Zhang", "Xueming Li" ]
Video colorization task has recently attracted wide attention. Recent methods mainly work on the temporal consistency in adjacent frames or frames with small interval. However, it still faces severe challenge of the inconsistency between frames with large interval.To address this issue, we propose a novel video colorization framework, which combines semantic correspondence into automatic video colorization to keep long-range consistency. Firstly, a reference colorization network is designed to automatically colorize the first frame of each video, obtaining a reference image to supervise the following whole colorization process. Such automatically colorized reference image can not only avoid labor-intensive and time-consuming manual selection, but also enhance the similarity between reference and grayscale images. Afterwards, a semantic correspondence network and an image colorization network are introduced to colorize a series of the remaining frames with the help of the reference. Each frame is supervised by both the reference image and the immediately colorized preceding frame to improve both short-range and long-range temporal consistency. Extensive experiments demonstrate that our method outperforms other methods in maintaining temporal consistency both qualitatively and quantitatively. In the NTIRE 2023 Video Colorization Challenge, our method ranks at the 3rd place in Color Distribution Consistency (CDC) Optimization track.
[ "cs.CV" ]
false
2305.07910
2023-05-13T12:31:37Z
Mask to reconstruct: Cooperative Semantics Completion for Video-text Retrieval
[ "Han Fang", "Zhifei Yang", "Xianghao Zang", "Chao Ban", "Hao Sun" ]
Recently, masked video modeling has been widely explored and significantly improved the model's understanding ability of visual regions at a local level. However, existing methods usually adopt random masking and follow the same reconstruction paradigm to complete the masked regions, which do not leverage the correlations between cross-modal content. In this paper, we present Mask for Semantics Completion (MASCOT) based on semantic-based masked modeling. Specifically, after applying attention-based video masking to generate high-informed and low-informed masks, we propose Informed Semantics Completion to recover masked semantics information. The recovery mechanism is achieved by aligning the masked content with the unmasked visual regions and corresponding textual context, which makes the model capture more text-related details at a patch level. Additionally, we shift the emphasis of reconstruction from irrelevant backgrounds to discriminative parts to ignore regions with low-informed masks. Furthermore, we design dual-mask co-learning to incorporate video cues under different masks and learn more aligned video representation. Our MASCOT performs state-of-the-art performance on four major text-video retrieval benchmarks, including MSR-VTT, LSMDC, ActivityNet, and DiDeMo. Extensive ablation studies demonstrate the effectiveness of the proposed schemes.
[ "cs.CV" ]
false
2305.07943
2023-05-13T15:15:18Z
Illumination-insensitive Binary Descriptor for Visual Measurement Based on Local Inter-patch Invariance
[ "Xinyu Lin", "Yingjie Zhou", "Xun Zhang", "Yipeng Liu", "Ce Zhu" ]
Binary feature descriptors have been widely used in various visual measurement tasks, particularly those with limited computing resources and storage capacities. Existing binary descriptors may not perform well for long-term visual measurement tasks due to their sensitivity to illumination variations. It can be observed that when image illumination changes dramatically, the relative relationship among local patches mostly remains intact. Based on the observation, consequently, this study presents an illumination-insensitive binary (IIB) descriptor by leveraging the local inter-patch invariance exhibited in multiple spatial granularities to deal with unfavorable illumination variations. By taking advantage of integral images for local patch feature computation, a highly efficient IIB descriptor is achieved. It can encode scalable features in multiple spatial granularities, thus facilitating a computationally efficient hierarchical matching from coarse to fine. Moreover, the IIB descriptor can also apply to other types of image data, such as depth maps and semantic segmentation results, when available in some applications. Numerical experiments on both natural and synthetic datasets reveal that the proposed IIB descriptor outperforms state-of-the-art binary descriptors and some testing float descriptors. The proposed IIB descriptor has also been successfully employed in a demo system for long-term visual localization. The code of the IIB descriptor will be publicly available.
[ "cs.CV" ]
false
2305.07954
2023-05-13T15:56:54Z
Image Segmentation via Probabilistic Graph Matching
[ "Ayelet Heimowitz", "Yosi Keller" ]
This work presents an unsupervised and semi-automatic image segmentation approach where we formulate the segmentation as a inference problem based on unary and pairwise assignment probabilities computed using low-level image cues. The inference is solved via a probabilistic graph matching scheme, which allows rigorous incorporation of low level image cues and automatic tuning of parameters. The proposed scheme is experimentally shown to compare favorably with contemporary semi-supervised and unsupervised image segmentation schemes, when applied to contemporary state-of-the-art image sets.
[ "cs.CV" ]
false
2305.07979
2023-05-13T18:30:27Z
A Two-Stage Real Image Deraining Method for GT-RAIN Challenge CVPR 2023 Workshop UG$^{\textbf{2}}$+ Track 3
[ "Yun Guo", "Xueyao Xiao", "Xiaoxiong Wang", "Yi Li", "Yi Chang", "Luxin Yan" ]
In this technical report, we briefly introduce the solution of our team HUST\li VIE for GT-Rain Challenge in CVPR 2023 UG$^{2}$+ Track 3. In this task, we propose an efficient two-stage framework to reconstruct a clear image from rainy frames. Firstly, a low-rank based video deraining method is utilized to generate pseudo GT, which fully takes the advantage of multi and aligned rainy frames. Secondly, a transformer-based single image deraining network Uformer is implemented to pre-train on large real rain dataset and then fine-tuned on pseudo GT to further improve image restoration. Moreover, in terms of visual pleasing effect, a comprehensive image processor module is utilized at the end of pipeline. Our overall framework is elaborately designed and able to handle both heavy rainy and foggy sequences provided in the final testing phase. Finally, we rank 1st on the average structural similarity (SSIM) and rank 2nd on the average peak signal-to-noise ratio (PSNR). Our code is available at https://github.com/yunguo224/UG2_Deraining.
[ "cs.CV" ]
false
2305.08017
2023-05-13T22:33:09Z
How to Train Your CheXDragon: Training Chest X-Ray Models for Transfer to Novel Tasks and Healthcare Systems
[ "Cara Van Uden", "Jeremy Irvin", "Mars Huang", "Nathan Dean", "Jason Carr", "Andrew Ng", "Curtis Langlotz" ]
Self-supervised learning (SSL) enables label efficient training for machine learning models. This is essential for domains such as medical imaging, where labels are costly and time-consuming to curate. However, the most effective supervised or SSL strategy for transferring models to different healthcare systems or novel tasks is not well understood. In this work, we systematically experiment with a variety of supervised and self-supervised pretraining strategies using multimodal datasets of medical images (chest X-rays) and text (radiology reports). We then evaluate their performance on data from two external institutions with diverse sets of tasks. In addition, we experiment with different transfer learning strategies to effectively adapt these pretrained models to new tasks and healthcare systems. Our empirical results suggest that multimodal SSL gives substantial gains over unimodal SSL in performance across new healthcare systems and tasks, comparable to models pretrained with full supervision. We demonstrate additional performance gains with models further adapted to the new dataset and task, using multimodal domain-adaptive pretraining (DAPT), linear probing then finetuning (LP-FT), and both methods combined. We offer suggestions for alternative models to use in scenarios where not all of these additions are feasible. Our results provide guidance for improving the generalization of medical image interpretation models to new healthcare systems and novel tasks.
[ "cs.CV" ]
false
2305.08877
2023-05-13T02:38:15Z
M$^2$DAR: Multi-View Multi-Scale Driver Action Recognition with Vision Transformer
[ "Yunsheng Ma", "Liangqi Yuan", "Amr Abdelraouf", "Kyungtae Han", "Rohit Gupta", "Zihao Li", "Ziran Wang" ]
Ensuring traffic safety and preventing accidents is a critical goal in daily driving, where the advancement of computer vision technologies can be leveraged to achieve this goal. In this paper, we present a multi-view, multi-scale framework for naturalistic driving action recognition and localization in untrimmed videos, namely M$^2$DAR, with a particular focus on detecting distracted driving behaviors. Our system features a weight-sharing, multi-scale Transformer-based action recognition network that learns robust hierarchical representations. Furthermore, we propose a new election algorithm consisting of aggregation, filtering, merging, and selection processes to refine the preliminary results from the action recognition module across multiple views. Extensive experiments conducted on the 7th AI City Challenge Track 3 dataset demonstrate the effectiveness of our approach, where we achieved an overlap score of 0.5921 on the A2 test set. Our source code is available at \url{https://github.com/PurdueDigitalTwin/M2DAR}.
[ "cs.CV" ]
false
2305.07814
2023-05-13T01:57:39Z
Cloud-RAIN: Point Cloud Analysis with Reflectional Invariance
[ "Yiming Cui", "Lecheng Ruan", "Hang-Cheng Dong", "Qiang Li", "Zhongming Wu", "Tieyong Zeng", "Feng-Lei Fan" ]
The networks for point cloud tasks are expected to be invariant when the point clouds are affinely transformed such as rotation and reflection. So far, relative to the rotational invariance that has been attracting major research attention in the past years, the reflection invariance is little addressed. Notwithstanding, reflection symmetry can find itself in very common and important scenarios, e.g., static reflection symmetry of structured streets, dynamic reflection symmetry from bidirectional motion of moving objects (such as pedestrians), and left- and right-hand traffic practices in different countries. To the best of our knowledge, unfortunately, no reflection-invariant network has been reported in point cloud analysis till now. To fill this gap, we propose a framework by using quadratic neurons and PCA canonical representation, referred to as Cloud-RAIN, to endow point \underline{Cloud} models with \underline{R}eflection\underline{A}l \underline{IN}variance. We prove a theorem to explain why Cloud-RAIN can enjoy reflection symmetry. Furthermore, extensive experiments also corroborate the reflection property of the proposed Cloud-RAIN and show that Cloud-RAIN is superior to data augmentation. Our code is available at https://github.com/YimingCuiCuiCui/Cloud-RAIN.
[ "cs.CV", "cs.AI" ]
false
2305.07816
2023-05-13T02:00:06Z
PALM: Open Fundus Photograph Dataset with Pathologic Myopia Recognition and Anatomical Structure Annotation
[ "Huihui Fang", "Fei Li", "Junde Wu", "Huazhu Fu", "Xu Sun", "José Ignacio Orlando", "Hrvoje Bogunović", "Xiulan Zhang", "Yanwu Xu" ]
Pathologic myopia (PM) is a common blinding retinal degeneration suffered by highly myopic population. Early screening of this condition can reduce the damage caused by the associated fundus lesions and therefore prevent vision loss. Automated diagnostic tools based on artificial intelligence methods can benefit this process by aiding clinicians to identify disease signs or to screen mass populations using color fundus photographs as inputs. This paper provides insights about PALM, our open fundus imaging dataset for pathological myopia recognition and anatomical structure annotation. Our databases comprises 1200 images with associated labels for the pathologic myopia category and manual annotations of the optic disc, the position of the fovea and delineations of lesions such as patchy retinal atrophy (including peripapillary atrophy) and retinal detachment. In addition, this paper elaborates on other details such as the labeling process used to construct the database, the quality and characteristics of the samples and provides other relevant usage notes.
[ "eess.IV", "cs.CV" ]
false
2305.07850
2023-05-13T06:46:07Z
Squeeze Excitation Embedded Attention UNet for Brain Tumor Segmentation
[ "Gaurav Prasanna", "John Rohit Ernest", "Lalitha G", "Sathiya Narayanan" ]
Deep Learning based techniques have gained significance over the past few years in the field of medicine. They are used in various applications such as classifying medical images, segmentation and identification. The existing architectures such as UNet, Attention UNet and Attention Residual UNet are already currently existing methods for the same application of brain tumor segmentation, but none of them address the issue of how to extract the features in channel level. In this paper, we propose a new architecture called Squeeze Excitation Embedded Attention UNet (SEEA-UNet), this architecture has both Attention UNet and Squeeze Excitation Network for better results and predictions, this is used mainly because to get information at both Spatial and channel levels. The proposed model was compared with the existing architectures based on the comparison it was found out that for lesser number of epochs trained, the proposed model performed better. Binary focal loss and Jaccard Coefficient were used to monitor the model's performance.
[ "eess.IV", "cs.CV" ]
false
2305.07976
2023-05-13T17:51:00Z
Nonnegative Low-Rank Tensor Completion via Dual Formulation with Applications to Image and Video Completion
[ "Tanmay Kumar Sinha", "Jayadev Naram", "Pawan Kumar" ]
Recent approaches to the tensor completion problem have often overlooked the nonnegative structure of the data. We consider the problem of learning a nonnegative low-rank tensor, and using duality theory, we propose a novel factorization of such tensors. The factorization decouples the nonnegative constraints from the low-rank constraints. The resulting problem is an optimization problem on manifolds, and we propose a variant of Riemannian conjugate gradients to solve it. We test the proposed algorithm across various tasks such as colour image inpainting, video completion, and hyperspectral image completion. Experimental results show that the proposed method outperforms many state-of-the-art tensor completion algorithms.
[ "cs.CV", "cs.LG" ]
false
2305.11178
2023-05-13T15:42:26Z
Vanishing Activations: A Symptom of Deep Capsule Networks
[ "Miles Everett", "Mingjun Zhong", "Georgios Leontidis" ]
Capsule Networks, an extension to Neural Networks utilizing vector or matrix representations instead of scalars, were initially developed to create a dynamic parse tree where visual concepts evolve from parts to complete objects. Early implementations of Capsule Networks achieved and maintain state-of-the-art results on various datasets. However, recent studies have revealed shortcomings in the original Capsule Network architecture, notably its failure to construct a parse tree and its susceptibility to vanishing gradients when deployed in deeper networks. This paper extends the investigation to a range of leading Capsule Network architectures, demonstrating that these issues are not confined to the original design. We argue that the majority of Capsule Network research has produced architectures that, while modestly divergent from the original Capsule Network, still retain a fundamentally similar structure. We posit that this inherent design similarity might be impeding the scalability of Capsule Networks. Our study contributes to the broader discussion on improving the robustness and scalability of Capsule Networks.
[ "cs.CV", "cs.LG" ]
false
2305.07815
2023-05-13T01:59:07Z
MetaMorphosis: Task-oriented Privacy Cognizant Feature Generation for Multi-task Learning
[ "Md Adnan Arefeen", "Zhouyu Li", "Md Yusuf Sarwar Uddin", "Anupam Das" ]
With the growth of computer vision applications, deep learning, and edge computing contribute to ensuring practical collaborative intelligence (CI) by distributing the workload among edge devices and the cloud. However, running separate single-task models on edge devices is inefficient regarding the required computational resource and time. In this context, multi-task learning allows leveraging a single deep learning model for performing multiple tasks, such as semantic segmentation and depth estimation on incoming video frames. This single processing pipeline generates common deep features that are shared among multi-task modules. However, in a collaborative intelligence scenario, generating common deep features has two major issues. First, the deep features may inadvertently contain input information exposed to the downstream modules (violating input privacy). Second, the generated universal features expose a piece of collective information than what is intended for a certain task, in which features for one task can be utilized to perform another task (violating task privacy). This paper proposes a novel deep learning-based privacy-cognizant feature generation process called MetaMorphosis that limits inference capability to specific tasks at hand. To achieve this, we propose a channel squeeze-excitation based feature metamorphosis module, Cross-SEC, to achieve distinct attention of all tasks and a de-correlation loss function with differential-privacy to train a deep learning model that produces distinct privacy-aware features as an output for the respective tasks. With extensive experimentation on four datasets consisting of diverse images related to scene understanding and facial attributes, we show that MetaMorphosis outperforms recent adversarial learning and universal feature generation methods by guaranteeing privacy requirements in an efficient way for image and video analytics.
[ "cs.CV", "cs.CR", "cs.DC" ]
false
2305.07822
2023-05-13T02:16:40Z
Deep Learning-based Prediction of Electrical Arrhythmia Circuits from Cardiac Motion: An In-Silico Study
[ "Jan Lebert", "Daniel Deng", "Lei Fan", "Lik Chuan Lee", "Jan Christoph" ]
The heart's contraction is caused by electrical excitation which propagates through the heart muscle. It was recently shown that the electrical excitation can be computed from the contractile motion of a simulated piece of heart muscle tissue using deep learning. In cardiac electrophysiology, a primary diagnostic goal is to identify electrical triggers or drivers of heart rhythm disorders. However, using electrical mapping techniques, it is currently impossible to map the three-dimensional morphology of the electrical waves throughout the entire heart muscle, especially during ventricular arrhythmias. Therefore, the approach to calculate or predict electrical excitation from the hearts motion could be a promising alternative diagnostic approach. Here, we demonstrate in computer simulations that it is possible to predict three-dimensional electrical wave dynamics from ventricular deformation mechanics using deep learning. We performed thousands of simulations of electromechanical activation dynamics in ventricular geometries and used the data to train a neural network which subsequently predicts the three-dimensional electrical wave pattern that caused the deformation. We demonstrate that, next to focal wave patterns, even complicated three-dimensional electrical wave patterns can be reconstructed, even if the network has never seen the particular arrhythmia. We show that the deep learning model has the ability to generalize by training it on data generated with the smoothed particle hydrodynamics (SPH) method and subsequently applying it to data generated with the finite element method (FEM). Predictions can be performed in the presence of scars and with significant heterogeneity. Our results suggest that, deep neural networks could be used to calculate intramural action potential wave patterns from imaging data of the motion of the heart muscle.
[ "physics.med-ph", "cs.CV", "physics.bio-ph" ]
false
2305.07892
2023-05-13T11:01:47Z
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
[ "Jun Shu", "Xiang Yuan", "Deyu Meng", "Zongben Xu" ]
Meta learning recently has been heavily researched and helped advance the contemporary machine learning. However, achieving well-performing meta-learning model requires a large amount of training tasks with high-quality meta-data representing the underlying task generalization goal, which is sometimes difficult and expensive to obtain for real applications. Current meta-data-driven meta-learning approaches, however, are fairly hard to train satisfactory meta-models with imperfect training tasks. To address this issue, we suggest a meta-knowledge informed meta-learning (MKIML) framework to improve meta-learning by additionally integrating compensated meta-knowledge into meta-learning process. We preliminarily integrate meta-knowledge into meta-objective via using an appropriate meta-regularization (MR) objective to regularize capacity complexity of the meta-model function class to facilitate better generalization on unseen tasks. As a practical implementation, we introduce data augmentation consistency to encode invariance as meta-knowledge for instantiating MR objective, denoted by DAC-MR. The proposed DAC-MR is hopeful to learn well-performing meta-models from training tasks with noisy, sparse or unavailable meta-data. We theoretically demonstrate that DAC-MR can be treated as a proxy meta-objective used to evaluate meta-model without high-quality meta-data. Besides, meta-data-driven meta-loss objective combined with DAC-MR is capable of achieving better meta-level generalization. 10 meta-learning tasks with different network architectures and benchmarks substantiate the capability of our DAC-MR on aiding meta-model learning. Fine performance of DAC-MR are obtained across all settings, and are well-aligned with our theoretical insights. This implies that our DAC-MR is problem-agnostic, and hopeful to be readily applied to extensive meta-learning problems and tasks.
[ "cs.LG", "cs.AI", "cs.CV" ]
false
2305.08878
2023-05-13T05:26:25Z
Learning to Learn Unlearned Feature for Brain Tumor Segmentation
[ "Seungyub Han", "Yeongmo Kim", "Seokhyeon Ha", "Jungwoo Lee", "Seunghong Choi" ]
We propose a fine-tuning algorithm for brain tumor segmentation that needs only a few data samples and helps networks not to forget the original tasks. Our approach is based on active learning and meta-learning. One of the difficulties in medical image segmentation is the lack of datasets with proper annotations, because it requires doctors to tag reliable annotation and there are many variants of a disease, such as glioma and brain metastasis, which are the different types of brain tumor and have different structural features in MR images. Therefore, it is impossible to produce the large-scale medical image datasets for all types of diseases. In this paper, we show a transfer learning method from high grade glioma to brain metastasis, and demonstrate that the proposed algorithm achieves balanced parameters for both glioma and brain metastasis domains within a few steps.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.10442
2023-05-13T20:06:53Z
CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
[ "Abhinav Sagar", "Sai Teja Gilukara" ]
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal and the convergence is too slow to be used in real-world applications. In this paper, we propose a novel image-based learning algorithm (CBAGAN-RRT) using a Convolutional Block Attention Generative Adversarial Network with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We train and test our network on the dataset generated by \cite{zhang2021generative} and demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. We conduct detailed experiments and ablation studies to illustrate the feasibility of our study and show that our model performs well not only on the training dataset but also on the unseen test dataset. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complicated environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
[ "cs.RO", "cs.CV", "cs.LG" ]
false
2305.07826
2023-05-13T02:53:37Z
Frequency-aware Dimension Selection for Static Word Embedding by Mixed Product Distance
[ "Lingfeng Shen", "Haiyun Jiang", "Lemao Liu", "Ying Chen" ]
Static word embedding is still useful, particularly for context-unavailable tasks, because in the case of no context available, pre-trained language models often perform worse than static word embeddings. Although dimension is a key factor determining the quality of static word embeddings, automatic dimension selection is rarely discussed. In this paper, we investigate the impact of word frequency on the dimension selection, and empirically find that word frequency is so vital that it needs to be taken into account during dimension selection. Based on such an empirical finding, this paper proposes a dimension selection method that uses a metric (Mixed Product Distance, MPD) to select a proper dimension for word embedding algorithms without training any word embedding. Through applying a post-processing function to oracle matrices, the MPD-based method can de-emphasize the impact of word frequency. Experiments on both context-unavailable and context-available tasks demonstrate the better efficiency-performance trade-off of our MPD-based dimension selection method over baselines.
[ "cs.CL" ]
false
2305.07839
2023-05-13T05:19:15Z
The Geometry of Multilingual Language Models: An Equality Lens
[ "Cheril Shah", "Yashashree Chandak", "Manan Suri" ]
Understanding the representations of different languages in multilingual language models is essential for comprehending their cross-lingual properties, predicting their performance on downstream tasks, and identifying any biases across languages. In our study, we analyze the geometry of three multilingual language models in Euclidean space and find that all languages are represented by unique geometries. Using a geometric separability index we find that although languages tend to be closer according to their linguistic family, they are almost separable with languages from other families. We also introduce a Cross-Lingual Similarity Index to measure the distance of languages with each other in the semantic space. Our findings indicate that the low-resource languages are not represented as good as high resource languages in any of the models
[ "cs.CL" ]
false
2305.07927
2023-05-13T14:41:05Z
RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training
[ "Chulun Zhou", "Yunlong Liang", "Fandong Meng", "Jinan Xu", "Jinsong Su", "Jie Zhou" ]
Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC^3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with stronger zero-shot capability.
[ "cs.CL" ]
false
2305.07824
2023-05-13T02:43:59Z
A Simple and Plug-and-play Method for Unsupervised Sentence Representation Enhancement
[ "Lingfeng Shen", "Haiyun Jiang", "Lemao Liu", "Shuming Shi" ]
Generating proper embedding of sentences through an unsupervised way is beneficial to semantic matching and retrieval problems in real-world scenarios. This paper presents Representation ALchemy (RepAL), an extremely simple post-processing method that enhances sentence representations. The basic idea in RepAL is to de-emphasize redundant information of sentence embedding generated by pre-trained models. Through comprehensive experiments, we show that RepAL is free of training and is a plug-and-play method that can be combined with most existing unsupervised sentence learning models. We also conducted in-depth analysis to understand RepAL.
[ "cs.CL", "cs.AI" ]
false
2305.07868
2023-05-13T08:58:37Z
Bridging History with AI A Comparative Evaluation of GPT 3.5, GPT4, and GoogleBARD in Predictive Accuracy and Fact Checking
[ "Davut Emre Tasar", "Ceren Ocal Tasar" ]
The rapid proliferation of information in the digital era underscores the importance of accurate historical representation and interpretation. While artificial intelligence has shown promise in various fields, its potential for historical fact-checking and gap-filling remains largely untapped. This study evaluates the performance of three large language models LLMs GPT 3.5, GPT 4, and GoogleBARD in the context of predicting and verifying historical events based on given data. A novel metric, Distance to Reality (DTR), is introduced to assess the models' outputs against established historical facts. The results reveal a substantial potential for AI in historical studies, with GPT 4 demonstrating superior performance. This paper underscores the need for further research into AI's role in enriching our understanding of the past and bridging historical knowledge gaps.
[ "cs.CL", "cs.AI" ]
false
2305.07928
2023-05-13T14:42:30Z
AMTSS: An Adaptive Multi-Teacher Single-Student Knowledge Distillation Framework For Multilingual Language Inference
[ "Qianglong Chen", "Feng Ji", "Feng-Lin Li", "Guohai Xu", "Ming Yan", "Ji Zhang", "Yin Zhang" ]
Knowledge distillation is of key importance to launching multilingual pre-trained language models for real applications. To support cost-effective language inference in multilingual settings, we propose AMTSS, an adaptive multi-teacher single-student distillation framework, which allows distilling knowledge from multiple teachers to a single student. We first introduce an adaptive learning strategy and teacher importance weight, which enables a student to effectively learn from max-margin teachers and easily adapt to new languages. Moreover, we present a shared student encoder with different projection layers in support of multiple languages, which contributes to largely reducing development and machine cost. Experimental results show that AMTSS gains competitive results on the public XNLI dataset and the realistic industrial dataset AliExpress (AE) in the E-commerce scenario.
[ "cs.CL", "cs.AI" ]
false
2305.07972
2023-05-13T17:32:39Z
Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis
[ "Agam Shah", "Suvan Paturi", "Sudheer Chava" ]
Monetary policy pronouncements by Federal Open Market Committee (FOMC) are a major driver of financial market returns. We construct the largest tokenized and annotated dataset of FOMC speeches, meeting minutes, and press conference transcripts in order to understand how monetary policy influences financial markets. In this study, we develop a novel task of hawkish-dovish classification and benchmark various pre-trained language models on the proposed dataset. Using the best-performing model (RoBERTa-large), we construct a measure of monetary policy stance for the FOMC document release days. To evaluate the constructed measure, we study its impact on the treasury market, stock market, and macroeconomic indicators. Our dataset, models, and code are publicly available on Huggingface and GitHub under CC BY-NC 4.0 license.
[ "cs.CL", "q-fin.CP" ]
false
2305.08005
2023-05-13T21:01:14Z
Beyond the Safeguards: Exploring the Security Risks of ChatGPT
[ "Erik Derner", "Kristina Batistič" ]
The increasing popularity of large language models (LLMs) such as ChatGPT has led to growing concerns about their safety, security risks, and ethical implications. This paper aims to provide an overview of the different types of security risks associated with ChatGPT, including malicious text and code generation, private data disclosure, fraudulent services, information gathering, and producing unethical content. We present an empirical study examining the effectiveness of ChatGPT's content filters and explore potential ways to bypass these safeguards, demonstrating the ethical implications and security risks that persist in LLMs even when protections are in place. Based on a qualitative analysis of the security implications, we discuss potential strategies to mitigate these risks and inform researchers, policymakers, and industry professionals about the complex security challenges posed by LLMs like ChatGPT. This study contributes to the ongoing discussion on the ethical and security implications of LLMs, underscoring the need for continued research in this area.
[ "cs.CR", "cs.AI", "cs.CL", "cs.CY", "cs.HC" ]
false
2305.07859
2023-05-13T07:55:47Z
HAiVA: Hybrid AI-assisted Visual Analysis Framework to Study the Effects of Cloud Properties on Climate Patterns
[ "Subhashis Hazarika", "Haruki Hirasawa", "Sookyung Kim", "Kalai Ramea", "Salva R. Cachay", "Peetak Mitra", "Dipti Hingmire", "Hansi Singh", "Phil J. Rasch" ]
Clouds have a significant impact on the Earth's climate system. They play a vital role in modulating Earth's radiation budget and driving regional changes in temperature and precipitation. This makes clouds ideal for climate intervention techniques like Marine Cloud Brightening (MCB) which refers to modification in cloud reflectivity, thereby cooling the surrounding region. However, to avoid unintended effects of MCB, we need a better understanding of the complex cloud to climate response function. Designing and testing such interventions scenarios with conventional Earth System Models is computationally expensive. Therefore, we propose a hybrid AI-assisted visual analysis framework to drive such scientific studies and facilitate interactive what-if investigation of different MCB intervention scenarios to assess their intended and unintended impacts on climate patterns. We work with a team of climate scientists to develop a suite of hybrid AI models emulating cloud-climate response function and design a tightly coupled frontend interactive visual analysis system to perform different MCB intervention experiments.
[ "cs.LG" ]
false
2305.07877
2023-05-13T09:18:51Z
Differentiating Viral and Bacterial Infections: A Machine Learning Model Based on Routine Blood Test Values
[ "Gregor Gunčar", "Matjaž Kukar", "Tim Smole", "Sašo Moškon", "Tomaž Vovko", "Simon Podnar", "Peter Černelč", "Miran Brvar", "Mateja Notar", "Manca Köster", "Marjeta Tušek Jelenc", "Marko Notar" ]
The growing threat of antibiotic resistance necessitates accurate differentiation between bacterial and viral infections for proper antibiotic administration. In this study, a Virus vs. Bacteria machine learning model was developed to discern between these infection types using 16 routine blood test results, C-reactive protein levels, biological sex, and age. With a dataset of 44,120 cases from a single medical center, the Virus vs. Bacteria model demonstrated remarkable accuracy of 82.2%, a Brier score of 0.129, and an area under the ROC curve of 0.91, surpassing the performance of traditional CRP decision rule models. The model demonstrates substantially improved accuracy within the CRP range of 10 40 mg/L, an interval in which CRP alone offers limited diagnostic value for distinguishing between bacterial and viral infections. These findings underscore the importance of considering multiple blood parameters for diagnostic decision-making and suggest that the Virus vs. Bacteria model could contribute to the creation of innovative diagnostic tools. Such tools would harness machine learning and relevant biomarkers to support enhanced clinical decision-making in managing infections.
[ "cs.LG", "I.2.6; J.3" ]
false
2305.07888
2023-05-13T10:21:53Z
Contrastive Domain Generalization via Logit Attribution Matching
[ "Han Gao", "Kaican Li", "Yongxiang Huang", "Luning Wang", "Caleb Chen Cao", "Nevin L. Zhang" ]
Domain Generalization (DG) is an important open problem in machine learning. Deep models are susceptible to domain shifts of even minute degrees, which severely compromises their reliability in real applications. To alleviate the issue, most existing methods enforce various invariant constraints across multiple training domains. However,such an approach provides little performance guarantee for novel test domains in general. In this paper, we investigate a different approach named Contrastive Domain Generalization (CDG), which exploits semantic invariance exhibited by strongly contrastive data pairs in lieu of multiple domains. We present a causal DG theory that shows the potential capability of CDG; together with a regularization technique, Logit Attribution Matching (LAM), for realizing CDG. We empirically show that LAM outperforms state-of-the-art DG methods with only a small portion of paired data and that LAM helps models better focus on semantic features which are crucial to DG.
[ "cs.LG" ]
false
2305.07911
2023-05-13T12:40:28Z
Delay-Adapted Policy Optimization and Improved Regret for Adversarial MDP with Delayed Bandit Feedback
[ "Tal Lancewicki", "Aviv Rosenberg", "Dmitry Sotnikov" ]
Policy Optimization (PO) is one of the most popular methods in Reinforcement Learning (RL). Thus, theoretical guarantees for PO algorithms have become especially important to the RL community. In this paper, we study PO in adversarial MDPs with a challenge that arises in almost every real-world application -- \textit{delayed bandit feedback}. We give the first near-optimal regret bounds for PO in tabular MDPs, and may even surpass state-of-the-art (which uses less efficient methods). Our novel Delay-Adapted PO (DAPO) is easy to implement and to generalize, allowing us to extend our algorithm to: (i) infinite state space under the assumption of linear $Q$-function, proving the first regret bounds for delayed feedback with function approximation. (ii) deep RL, demonstrating its effectiveness in experiments on MuJoCo domains.
[ "cs.LG" ]
false
2305.08001
2023-05-13T20:45:27Z
Efficient Asynchronize Stochastic Gradient Algorithm with Structured Data
[ "Zhao Song", "Mingquan Ye" ]
Deep learning has achieved impressive success in a variety of fields because of its good generalization. However, it has been a challenging problem to quickly train a neural network with a large number of layers. The existing works utilize the locality-sensitive hashing technique or some data structures on space partitioning to alleviate the training cost in each iteration. In this work, we try accelerating the computations in each iteration from the perspective of input data points. Specifically, for a two-layer fully connected neural network, when the training data have some special properties, e.g., Kronecker structure, each iteration can be completed in sublinear time in the data dimension.
[ "cs.LG" ]
false
2305.07810
2023-05-13T01:10:49Z
Depth Dependence of $μ$P Learning Rates in ReLU MLPs
[ "Samy Jelassi", "Boris Hanin", "Ziwei Ji", "Sashank J. Reddi", "Srinadh Bhojanapalli", "Sanjiv Kumar" ]
In this short note we consider random fully connected ReLU networks of width $n$ and depth $L$ equipped with a mean-field weight initialization. Our purpose is to study the dependence on $n$ and $L$ of the maximal update ($\mu$P) learning rate, the largest learning rate for which the mean squared change in pre-activations after one step of gradient descent remains uniformly bounded at large $n,L$. As in prior work on $\mu$P of Yang et. al., we find that this maximal update learning rate is independent of $n$ for all but the first and last layer weights. However, we find that it has a non-trivial dependence of $L$, scaling like $L^{-3/2}.$
[ "cs.LG", "stat.ML" ]
false
2305.07908
2023-05-13T12:15:25Z
Convergence and scaling of Boolean-weight optimization for hardware reservoirs
[ "Louis Andreoli", "Stéphane Chrétien", "Xavier Porte", "Daniel Brunner" ]
Hardware implementation of neural network are an essential step to implement next generation efficient and powerful artificial intelligence solutions. Besides the realization of a parallel, efficient and scalable hardware architecture, the optimization of the system's extremely large parameter space with sampling-efficient approaches is essential. Here, we analytically derive the scaling laws for highly efficient Coordinate Descent applied to optimizing the readout layer of a random recurrently connection neural network, a reservoir. We demonstrate that the convergence is exponential and scales linear with the network's number of neurons. Our results perfectly reproduce the convergence and scaling of a large-scale photonic reservoir implemented in a proof-of-concept experiment. Our work therefore provides a solid foundation for such optimization in hardware networks, and identifies future directions that are promising for optimizing convergence speed during learning leveraging measures of a neural network's amplitude statistics and the weight update rule.
[ "stat.ML", "cs.LG" ]
false
2305.07958
2023-05-13T16:22:21Z
More for Less: Safe Policy Improvement With Stronger Performance Guarantees
[ "Patrick Wienhöft", "Marnix Suilen", "Thiago D. Simão", "Clemens Dubslaff", "Christel Baier", "Nils Jansen" ]
In an offline reinforcement learning setting, the safe policy improvement (SPI) problem aims to improve the performance of a behavior policy according to which sample data has been generated. State-of-the-art approaches to SPI require a high number of samples to provide practical probabilistic guarantees on the improved policy's performance. We present a novel approach to the SPI problem that provides the means to require less data for such guarantees. Specifically, to prove the correctness of these guarantees, we devise implicit transformations on the data set and the underlying environment model that serve as theoretical foundations to derive tighter improvement bounds for SPI. Our empirical evaluation, using the well-established SPI with baseline bootstrapping (SPIBB) algorithm, on standard benchmarks shows that our method indeed significantly reduces the sample complexity of the SPIBB algorithm.
[ "cs.LG", "cs.AI" ]
false
2305.07959
2023-05-13T16:29:10Z
A Novel Memetic Strategy for Optimized Learning of Classification Trees
[ "Tommaso Aldinucci" ]
Given the increasing interest in interpretable machine learning, classification trees have again attracted the attention of the scientific community because of their glass-box structure. These models are usually built using greedy procedures, solving subproblems to find cuts in the feature space that minimize some impurity measures. In contrast to this standard greedy approach and to the recent advances in the definition of the learning problem through MILP-based exact formulations, in this paper we propose a novel evolutionary algorithm for the induction of classification trees that exploits a memetic approach that is able to handle datasets with thousands of points. Our procedure combines the exploration of the feasible space of solutions with local searches to obtain structures with generalization capabilities that are competitive with the state-of-the-art methods.
[ "cs.LG", "stat.CO" ]
false
2305.07971
2023-05-13T17:29:18Z
Tight and fast generalization error bound of graph embedding in metric space
[ "Atsushi Suzuki", "Atsushi Nitanda", "Taiji Suzuki", "Jing Wang", "Feng Tian", "Kenji Yamanishi" ]
Recent studies have experimentally shown that we can achieve in non-Euclidean metric space effective and efficient graph embedding, which aims to obtain the vertices' representations reflecting the graph's structure in the metric space. Specifically, graph embedding in hyperbolic space has experimentally succeeded in embedding graphs with hierarchical-tree structure, e.g., data in natural languages, social networks, and knowledge bases. However, recent theoretical analyses have shown a much higher upper bound on non-Euclidean graph embedding's generalization error than Euclidean one's, where a high generalization error indicates that the incompleteness and noise in the data can significantly damage learning performance. It implies that the existing bound cannot guarantee the success of graph embedding in non-Euclidean metric space in a practical training data size, which can prevent non-Euclidean graph embedding's application in real problems. This paper provides a novel upper bound of graph embedding's generalization error by evaluating the local Rademacher complexity of the model as a function set of the distances of representation couples. Our bound clarifies that the performance of graph embedding in non-Euclidean metric space, including hyperbolic space, is better than the existing upper bounds suggest. Specifically, our new upper bound is polynomial in the metric space's geometric radius $R$ and can be $O(\frac{1}{S})$ at the fastest, where $S$ is the training data size. Our bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(\frac{1}{\sqrt{S}})$ at the fastest. Specific calculations on example cases show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
[ "stat.ML", "cs.LG" ]
false
2306.01744
2023-05-13T11:40:31Z
Disproving XAI Myths with Formal Methods -- Initial Results
[ "Joao Marques-Silva" ]
The advances in Machine Learning (ML) in recent years have been both impressive and far-reaching. However, the deployment of ML models is still impaired by a lack of trust in how the best-performing ML models make predictions. The issue of lack of trust is even more acute in the uses of ML models in high-risk or safety-critical domains. eXplainable artificial intelligence (XAI) is at the core of ongoing efforts for delivering trustworthy AI. Unfortunately, XAI is riddled with critical misconceptions, that foster distrust instead of building trust. This paper details some of the most visible misconceptions in XAI, and shows how formal methods have been used, both to disprove those misconceptions, but also to devise practically effective alternatives.
[ "cs.AI", "cs.LG" ]
false
2305.07818
2023-05-13T02:08:10Z
An Active Learning-based Approach for Hosting Capacity Analysis in Distribution Systems
[ "Kiyeob Lee", "Peng Zhao", "Anirban Bhattacharya", "Bani K. Mallick", "Le Xie" ]
With the increasing amount of distributed energy resources (DERs) integration, there is a significant need to model and analyze hosting capacity (HC) for future electric distribution grids. Hosting capacity analysis (HCA) examines the amount of DERs that can be safely integrated into the grid and is a challenging task in full generality because there are many possible integration of DERs in foresight. That is, there are numerous extreme points between feasible and infeasible sets. Moreover, HC depends on multiple factors such as (a) adoption patterns of DERs that depend on socio-economic behaviors and (b) how DERs are controlled and managed. These two factors are intrinsic to the problem space because not all integration of DERs may be centrally planned, and could largely change our understanding about HC. This paper addresses the research gap by capturing the two factors (a) and (b) in HCA and by identifying a few most insightful HC scenarios at the cost of domain knowledge. We propose a data-driven HCA framework and introduce active learning in HCA to effectively explore scenarios. Active learning in HCA and characteristics of HC with respect to the two factors (a) and (b) are illustrated in a 3-bus example. Next, detailed large-scale studies are proposed to understand the significance of (a) and (b). Our findings suggest that HC and its interpretations significantly change subject to the two factors (a) and (b).
[ "eess.SY", "cs.LG", "cs.SY" ]
false
2305.07844
2023-05-13T06:16:39Z
Thompson Sampling for Parameterized Markov Decision Processes with Uninformative Actions
[ "Michael Gimelfarb", "Michael Jong Kim" ]
We study parameterized MDPs (PMDPs) in which the key parameters of interest are unknown and must be learned using Bayesian inference. One key defining feature of such models is the presence of "uninformative" actions that provide no information about the unknown parameters. We contribute a set of assumptions for PMDPs under which Thompson sampling guarantees an asymptotically optimal expected regret bound of $O(T^{-1})$, which are easily verified for many classes of problems such as queuing, inventory control, and dynamic pricing.
[ "eess.SY", "cs.LG", "cs.SY" ]
false
2305.07863
2023-05-13T08:25:57Z
A Flow-Based Generative Model for Rare-Event Simulation
[ "Lachlan Gibson", "Marcus Hoerger", "Dirk Kroese" ]
Solving decision problems in complex, stochastic environments is often achieved by estimating the expected outcome of decisions via Monte Carlo sampling. However, sampling may overlook rare, but important events, which can severely impact the decision making process. We present a method in which a Normalizing Flow generative model is trained to simulate samples directly from a conditional distribution given that a rare event occurs. By utilizing Coupling Flows, our model can, in principle, approximate any sampling distribution arbitrarily well. By combining the approximation method with Importance Sampling, highly accurate estimates of complicated integrals and expectations can be obtained. We include several examples to demonstrate how the method can be used for efficient sampling and estimation, even in high-dimensional and rare-event settings. We illustrate that by simulating directly from a rare-event distribution significant insight can be gained into the way rare events happen.
[ "stat.ML", "cs.LG", "stat.CO" ]
false
2305.07871
2023-05-13T09:08:27Z
Scalable Educational Question Generation with Pre-trained Language Models
[ "Sahan Bulathwela", "Hamze Muse", "Emine Yilmaz" ]
The automatic generation of educational questions will play a key role in scaling online education, enabling self-assessment at scale when a global population is manoeuvring their personalised learning journeys. We develop \textit{EduQG}, a novel educational question generation model built by adapting a large language model. Our extensive experiments demonstrate that \textit{EduQG} can produce superior educational questions by further pre-training and fine-tuning a pre-trained language model on the scientific text and science question data.
[ "cs.AI", "cs.CY", "cs.IR", "cs.LG", "H.3.3; J.1; I.2.0" ]
false
2305.07872
2023-05-13T09:09:20Z
SPP-CNN: An Efficient Framework for Network Robustness Prediction
[ "Chengpei Wu", "Yang Lou", "Lin Wang", "Junli Li", "Xiang Li", "Guanrong Chen" ]
This paper addresses the robustness of a network to sustain its connectivity and controllability against malicious attacks. This kind of network robustness is typically measured by the time-consuming attack simulation, which returns a sequence of values that record the remaining connectivity and controllability after a sequence of node- or edge-removal attacks. For improvement, this paper develops an efficient framework for network robustness prediction, the spatial pyramid pooling convolutional neural network (SPP-CNN). The new framework installs a spatial pyramid pooling layer between the convolutional and fully-connected layers, overcoming the common mismatch issue in the CNN-based prediction approaches and extending its generalizability. Extensive experiments are carried out by comparing SPP-CNN with three state-of-the-art robustness predictors, namely a CNN-based and two graph neural networks-based frameworks. Synthetic and real-world networks, both directed and undirected, are investigated. Experimental results demonstrate that the proposed SPP-CNN achieves better prediction performances and better generalizability to unknown datasets, with significantly lower time-consumption, than its counterparts.
[ "cs.LG", "cs.SY", "eess.SY" ]
false
2305.07887
2023-05-13T10:13:43Z
Reviewer assignment problem: A scoping review
[ "Jelena Jovanovic", "Ebrahim Bagheri" ]
Peer review is an integral component of scientific research. The quality of peer review, and consequently the published research, depends to a large extent on the ability to recruit adequate reviewers for submitted papers. However, finding such reviewers is an increasingly difficult task due to several factors, such as the continuous increase both in the production of scientific papers and the workload of scholars. To mitigate these challenges, solutions for automated association of papers with "well matching" reviewers - the task often referred to as reviewer assignment problem (RAP) - have been the subject of research for thirty years now. Even though numerous solutions have been suggested, to our knowledge, a recent systematic synthesis of the RAP-related literature is missing. To fill this gap and support further RAP-related research, in this paper, we present a scoping review of computational approaches for addressing RAP. Following the latest methodological guidance for scoping reviews, we have collected recent literature on RAP from three databases (Scopus, Google Scholar, DBLP) and, after applying the eligibility criteria, retained 26 studies for extracting and synthesising data on several aspects of RAP research including: i) the overall framing of and approach to RAP; ii) the criteria for reviewer selection; iii) the modelling of candidate reviewers and submissions; iv) the computational methods for matching reviewers and submissions; and v) the methods for evaluating the performance of the proposed solutions. The paper summarises and discusses the findings for each of the aforementioned aspects of RAP research and suggests future research directions.
[ "cs.IR", "cs.DL", "cs.LG", "H.3.3; I.2.7; H.4.m" ]
false
2305.07967
2023-05-13T17:04:54Z
Structured Low-Rank Tensor Learning
[ "Jayadev Naram", "Tanmay Kumar Sinha", "Pawan Kumar" ]
We consider the problem of learning low-rank tensors from partial observations with structural constraints, and propose a novel factorization of such tensors, which leads to a simpler optimization problem. The resulting problem is an optimization problem on manifolds. We develop first-order and second-order Riemannian optimization algorithms to solve it. The duality gap for the resulting problem is derived, and we experimentally verify the correctness of the proposed algorithm. We demonstrate the algorithm on nonnegative constraints and Hankel constraints.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2305.07973
2023-05-13T17:33:01Z
On the Computational Cost of Stochastic Security
[ "Noah A. Crum", "Leanto Sunny", "Pooya Ronagh", "Raymond Laflamme", "Radhakrishnan Balu", "George Siopsis" ]
We investigate whether long-run persistent chain Monte Carlo simulation of Langevin dynamics improves the quality of the representations achieved by energy-based models (EBM). We consider a scheme wherein Monte Carlo simulation of a diffusion process using a trained EBM is used to improve the adversarial robustness and the calibration score of an independent classifier network. Our results show that increasing the computational budget of Gibbs sampling in persistent contrastive divergence improves the calibration and adversarial robustness of the model, elucidating the practical merit of realizing new quantum and classical hardware and software for efficient Gibbs sampling from continuous energy potentials.
[ "cs.LG", "cs.AI", "math.OC", "quant-ph" ]
false
2305.08013
2023-05-13T21:44:32Z
Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression
[ "Ivan Butakov", "Aleksander Tolmachev", "Sofia Malanchuk", "Anna Neopryatnaya", "Alexey Frolov", "Kirill Andreev" ]
The Information Bottleneck (IB) principle offers an information-theoretic framework for analyzing the training process of deep neural networks (DNNs). Its essence lies in tracking the dynamics of two mutual information (MI) values: one between the hidden layer and the class label, and the other between the hidden layer and the DNN input. According to the hypothesis put forth by Shwartz-Ziv and Tishby (2017), the training process consists of two distinct phases: fitting and compression. The latter phase is believed to account for the good generalization performance exhibited by DNNs. Due to the challenging nature of estimating MI between high-dimensional random vectors, this hypothesis has only been verified for toy NNs or specific types of NNs, such as quantized NNs and dropout NNs. In this paper, we introduce a comprehensive framework for conducting IB analysis of general NNs. Our approach leverages the stochastic NN method proposed by Goldfeld et al. (2019) and incorporates a compression step to overcome the obstacles associated with high dimensionality. In other words, we estimate the MI between the compressed representations of high-dimensional random vectors. The proposed method is supported by both theoretical and practical justifications. Notably, we demonstrate the accuracy of our estimator through synthetic experiments featuring predefined MI values. Finally, we perform IB analysis on a close-to-real-scale convolutional DNN, which reveals new features of the MI dynamics.
[ "cs.LG", "cs.IT", "math.IT", "94A16 (Primary) 68T07, 94A17 (Secondary)", "E.4; H.1.1" ]
false
2305.08053
2023-05-14T03:32:19Z
SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by Spatial Consistency
[ "Miao Zhang", "Yiqing Shen", "Shenghui Zhong" ]
Images captured under low-light conditions are often plagued by several challenges, including diminished contrast, increased noise, loss of fine details, and unnatural color reproduction. These factors can significantly hinder the performance of computer vision tasks such as object detection and image segmentation. As a result, improving the quality of low-light images is of paramount importance for practical applications in the computer vision domain.To effectively address these challenges, we present a novel low-light image enhancement model, termed Spatial Consistency Retinex Network (SCRNet), which leverages the Retinex-based structure and is guided by the principle of spatial consistency.Specifically, our proposed model incorporates three levels of consistency: channel level, semantic level, and texture level, inspired by the principle of spatial consistency.These levels of consistency enable our model to adaptively enhance image features, ensuring more accurate and visually pleasing results.Extensive experimental evaluations on various low-light image datasets demonstrate that our proposed SCRNet outshines existing state-of-the-art methods, highlighting the potential of SCRNet as an effective solution for enhancing low-light images.
[ "cs.CV" ]
false
2305.08075
2023-05-14T05:17:32Z
Analyzing Compression Techniques for Computer Vision
[ "Maniratnam Mandal", "Imran Khan" ]
Compressing deep networks is highly desirable for practical use-cases in computer vision applications. Several techniques have been explored in the literature, and research has been done in finding efficient strategies for combining them. For this project, we aimed to explore three different basic compression techniques - knowledge distillation, pruning, and quantization for small-scale recognition tasks. Along with the basic methods, we also test the efficacy of combining them in a sequential manner. We analyze them using MNIST and CIFAR-10 datasets and present the results along with few observations inferred from them.
[ "cs.CV" ]
false
2305.08117
2023-05-14T10:17:09Z
MultiQuant: A Novel Multi-Branch Topology Method for Arbitrary Bit-width Network Quantization
[ "Yunshan Zhong", "Mingbao Lin", "Yuyao Zhou", "Mengzhao Chen", "Yuxin Zhang", "Fei Chao", "Rongrong Ji" ]
Arbitrary bit-width network quantization has received significant attention due to its high adaptability to various bit-width requirements during runtime. However, in this paper, we investigate existing methods and observe a significant accumulation of quantization errors caused by frequent bit-width switching of weights and activations, leading to limited performance. To address this issue, we propose MultiQuant, a novel method that utilizes a multi-branch topology for arbitrary bit-width quantization. MultiQuant duplicates the network body into multiple independent branches and quantizes the weights of each branch to a fixed 2-bit while retaining the input activations in the expected bit-width. This approach maintains the computational cost as the same while avoiding the switching of weight bit-widths, thereby substantially reducing errors in weight quantization. Additionally, we introduce an amortization branch selection strategy to distribute quantization errors caused by activation bit-width switching among branches to enhance performance. Finally, we design an in-place distillation strategy that facilitates guidance between branches to further enhance MultiQuant's performance. Extensive experiments demonstrate that MultiQuant achieves significant performance gains compared to existing arbitrary bit-width quantization methods. Code is at \url{https://github.com/zysxmu/MultiQuant}.
[ "cs.CV" ]
false
2305.08190
2023-05-14T15:58:55Z
TSGN: Temporal Scene Graph Neural Networks with Projected Vectorized Representation for Multi-Agent Motion Prediction
[ "Yunong Wu", "Thomas Gilles", "Bogdan Stanciulescu", "Fabien Moutarde" ]
Predicting future motions of nearby agents is essential for an autonomous vehicle to take safe and effective actions. In this paper, we propose TSGN, a framework using Temporal Scene Graph Neural Networks with projected vectorized representations for multi-agent trajectory prediction. Projected vectorized representation models the traffic scene as a graph which is constructed by a set of vectors. These vectors represent agents, road network, and their spatial relative relationships. All relative features under this representation are both translationand rotation-invariant. Based on this representation, TSGN captures the spatial-temporal features across agents, road network, interactions among them, and temporal dependencies of temporal traffic scenes. TSGN can predict multimodal future trajectories for all agents simultaneously, plausibly, and accurately. Meanwhile, we propose a Hierarchical Lane Transformer for capturing interactions between agents and road network, which filters the surrounding road network and only keeps the most probable lane segments which could have an impact on the future behavior of the target agent. Without sacrificing the prediction performance, this greatly reduces the computational burden. Experiments show TSGN achieves state-of-the-art performance on the Argoverse motion forecasting benchmar.
[ "cs.CV" ]
false
2305.08215
2023-05-14T18:18:05Z
Learning Structure Aware Deep Spectral Embedding
[ "Hira Yaseen", "Arif Mahmood" ]
Spectral Embedding (SE) has often been used to map data points from non-linear manifolds to linear subspaces for the purpose of classification and clustering. Despite significant advantages, the subspace structure of data in the original space is not preserved in the embedding space. To address this issue subspace clustering has been proposed by replacing the SE graph affinity with a self-expression matrix. It works well if the data lies in a union of linear subspaces however, the performance may degrade in real-world applications where data often spans non-linear manifolds. To address this problem we propose a novel structure-aware deep spectral embedding by combining a spectral embedding loss and a structure preservation loss. To this end, a deep neural network architecture is proposed that simultaneously encodes both types of information and aims to generate structure-aware spectral embedding. The subspace structure of the input data is encoded by using attention-based self-expression learning. The proposed algorithm is evaluated on six publicly available real-world datasets. The results demonstrate the excellent clustering performance of the proposed algorithm compared to the existing state-of-the-art methods. The proposed algorithm has also exhibited better generalization to unseen data points and it is scalable to larger datasets without requiring significant computational resources.
[ "cs.CV" ]
false
2305.08232
2023-05-14T19:40:02Z
Combining geolocation and height estimation of objects from street level imagery
[ "Matej Ulicny", "Vladimir A. Krylov", "Julie Connelly", "Rozenn Dahyot" ]
We propose a pipeline for combined multi-class object geolocation and height estimation from street level RGB imagery, which is considered as a single available input data modality. Our solution is formulated via Markov Random Field optimization with deterministic output. The proposed technique uses image metadata along with coordinates of objects detected in the image plane as found by a custom-trained Convolutional Neural Network. Computing the object height using our methodology, in addition to object geolocation, has negligible effect on the overall computational cost. Accuracy is demonstrated experimentally for water drains and road signs on which we achieve average elevation estimation error lower than 20cm.
[ "cs.CV" ]
false
2305.08031
2023-05-14T00:17:33Z
On enhancing the robustness of Vision Transformers: Defensive Diffusion
[ "Raza Imam", "Muhammad Huzaifa", "Mohammed El-Amine Azz" ]
Privacy and confidentiality of medical data are of utmost importance in healthcare settings. ViTs, the SOTA vision model, rely on large amounts of patient data for training, which raises concerns about data security and the potential for unauthorized access. Adversaries may exploit vulnerabilities in ViTs to extract sensitive patient information and compromising patient privacy. This work address these vulnerabilities to ensure the trustworthiness and reliability of ViTs in medical applications. In this work, we introduced a defensive diffusion technique as an adversarial purifier to eliminate adversarial noise introduced by attackers in the original image. By utilizing the denoising capabilities of the diffusion model, we employ a reverse diffusion process to effectively eliminate the adversarial noise from the attack sample, resulting in a cleaner image that is then fed into the ViT blocks. Our findings demonstrate the effectiveness of the diffusion model in eliminating attack-agnostic adversarial noise from images. Additionally, we propose combining knowledge distillation with our framework to obtain a lightweight student model that is both computationally efficient and robust against gray box attacks. Comparison of our method with a SOTA baseline method, SEViT, shows that our work is able to outperform the baseline. Extensive experiments conducted on a publicly available Tuberculosis X-ray dataset validate the computational efficiency and improved robustness achieved by our proposed architecture.
[ "cs.CV", "cs.AI" ]
false
2305.08042
2023-05-14T01:43:10Z
CHSEL: Producing Diverse Plausible Pose Estimates from Contact and Free Space Data
[ "Sheng Zhong", "Nima Fazeli", "Dmitry Berenson" ]
This paper proposes a novel method for estimating the set of plausible poses of a rigid object from a set of points with volumetric information, such as whether each point is in free space or on the surface of the object. In particular, we study how pose can be estimated from force and tactile data arising from contact. Using data derived from contact is challenging because it is inherently less information-dense than visual data, and thus the pose estimation problem is severely under-constrained when there are few contacts. Rather than attempting to estimate the true pose of the object, which is not tractable without a large number of contacts, we seek to estimate a plausible set of poses which obey the constraints imposed by the sensor data. Existing methods struggle to estimate this set because they are either designed for single pose estimates or require informative priors to be effective. Our approach to this problem, Constrained pose Hypothesis Set Elimination (CHSEL), has three key attributes: 1) It considers volumetric information, which allows us to account for known free space; 2) It uses a novel differentiable volumetric cost function to take advantage of powerful gradient-based optimization tools; and 3) It uses methods from the Quality Diversity (QD) optimization literature to produce a diverse set of high-quality poses. To our knowledge, QD methods have not been used previously for pose registration. We also show how to update our plausible pose estimates online as more data is gathered by the robot. Our experiments suggest that CHSEL shows large performance improvements over several baseline methods for both simulated and real-world data.
[ "cs.RO", "cs.CV" ]
false
2305.08066
2023-05-14T04:37:53Z
Helping Visually Impaired People Take Better Quality Pictures
[ "Maniratnam Mandal", "Deepti Ghadiyaram", "Danna Gurari", "Alan C. Bovik" ]
Perception-based image analysis technologies can be used to help visually impaired people take better quality pictures by providing automated guidance, thereby empowering them to interact more confidently on social media. The photographs taken by visually impaired users often suffer from one or both of two kinds of quality issues: technical quality (distortions), and semantic quality, such as framing and aesthetic composition. Here we develop tools to help them minimize occurrences of common technical distortions, such as blur, poor exposure, and noise. We do not address the complementary problems of semantic quality, leaving that aspect for future work. The problem of assessing and providing actionable feedback on the technical quality of pictures captured by visually impaired users is hard enough, owing to the severe, commingled distortions that often occur. To advance progress on the problem of analyzing and measuring the technical quality of visually impaired user-generated content (VI-UGC), we built a very large and unique subjective image quality and distortion dataset. This new perceptual resource, which we call the LIVE-Meta VI-UGC Database, contains $40$K real-world distorted VI-UGC images and $40$K patches, on which we recorded $2.7$M human perceptual quality judgments and $2.7$M distortion labels. Using this psychometric resource we also created an automatic blind picture quality and distortion predictor that learns local-to-global spatial quality relationships, achieving state-of-the-art prediction performance on VI-UGC pictures, significantly outperforming existing picture quality models on this unique class of distorted picture data. We also created a prototype feedback system that helps to guide users to mitigate quality issues and take better quality pictures, by creating a multi-task learning framework.
[ "cs.CV", "eess.IV" ]
false
2305.08092
2023-05-14T08:05:30Z
Meta-DM: Applications of Diffusion Models on Few-Shot Learning
[ "Wentao Hu", "Xiurong Jiang", "Jiarun Liu", "Yuqi Yang", "Hui Tian" ]
In the field of few-shot learning (FSL), extensive research has focused on improving network structures and training strategies. However, the role of data processing modules has not been fully explored. Therefore, in this paper, we propose Meta-DM, a generalized data processing module for FSL problems based on diffusion models. Meta-DM is a simple yet effective module that can be easily integrated with existing FSL methods, leading to significant performance improvements in both supervised and unsupervised settings. We provide a theoretical analysis of Meta-DM and evaluate its performance on several algorithms. Our experiments show that combining Meta-DM with certain methods achieves state-of-the-art results.
[ "cs.LG", "cs.CV" ]
false
2305.08191
2023-05-14T16:00:03Z
Is end-to-end learning enough for fitness activity recognition?
[ "Antoine Mercier", "Guillaume Berger", "Sunny Panchal", "Florian Letsch", "Cornelius Boehm", "Nahua Kang", "Ingo Bax", "Roland Memisevic" ]
End-to-end learning has taken hold of many computer vision tasks, in particular, related to still images, with task-specific optimization yielding very strong performance. Nevertheless, human-centric action recognition is still largely dominated by hand-crafted pipelines, and only individual components are replaced by neural networks that typically operate on individual frames. As a testbed to study the relevance of such pipelines, we present a new fully annotated video dataset of fitness activities. Any recognition capabilities in this domain are almost exclusively a function of human poses and their temporal dynamics, so pose-based solutions should perform well. We show that, with this labelled data, end-to-end learning on raw pixels can compete with state-of-the-art action recognition pipelines based on pose estimation. We also show that end-to-end learning can support temporally fine-grained tasks such as real-time repetition counting.
[ "cs.CV", "cs.LG" ]
false
2305.08059
2023-05-14T03:57:11Z
Semantic-aware Dynamic Retrospective-Prospective Reasoning for Event-level Video Question Answering
[ "Chenyang Lyu", "Tianbo Ji", "Yvette Graham", "Jennifer Foster" ]
Event-Level Video Question Answering (EVQA) requires complex reasoning across video events to obtain the visual information needed to provide optimal answers. However, despite significant progress in model performance, few studies have focused on using the explicit semantic connections between the question and visual information especially at the event level. There is need for using such semantic connections to facilitate complex reasoning across video frames. Therefore, we propose a semantic-aware dynamic retrospective-prospective reasoning approach for video-based question answering. Specifically, we explicitly use the Semantic Role Labeling (SRL) structure of the question in the dynamic reasoning process where we decide to move to the next frame based on which part of the SRL structure (agent, verb, patient, etc.) of the question is being focused on. We conduct experiments on a benchmark EVQA dataset - TrafficQA. Results show that our proposed approach achieves superior performance compared to previous state-of-the-art models. Our code will be made publicly available for research use.
[ "cs.CV", "cs.AI", "cs.CL" ]
false
2305.08069
2023-05-14T04:53:05Z
Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection
[ "Burhaneddin Yaman", "Tanvir Mahmud", "Chun-Hao Liu" ]
We propose an embarrassingly simple method -- instance-aware repeat factor sampling (IRFS) to address the problem of imbalanced data in long-tailed object detection. Imbalanced datasets in real-world object detection often suffer from a large disparity in the number of instances for each class. To improve the generalization performance of object detection models on rare classes, various data sampling techniques have been proposed. Repeat factor sampling (RFS) has shown promise due to its simplicity and effectiveness. Despite its efficiency, RFS completely neglects the instance counts and solely relies on the image count during re-sampling process. However, instance count may immensely vary for different classes with similar image counts. Such variation highlights the importance of both image and instance for addressing the long-tail distributions. Thus, we propose IRFS which unifies instance and image counts for the re-sampling process to be aware of different perspectives of the imbalance in long-tailed datasets. Our method shows promising results on the challenging LVIS v1.0 benchmark dataset over various architectures and backbones, demonstrating their effectiveness in improving the performance of object detection models on rare classes with a relative $+50\%$ average precision (AP) improvement over counterpart RFS. IRFS can serve as a strong baseline and be easily incorporated into existing long-tailed frameworks.
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2305.08076
2023-05-14T05:27:17Z
Improving Defensive Distillation using Teacher Assistant
[ "Maniratnam Mandal", "Suna Gao" ]
Adversarial attacks pose a significant threat to the security and safety of deep neural networks being applied to modern applications. More specifically, in computer vision-based tasks, experts can use the knowledge of model architecture to create adversarial samples imperceptible to the human eye. These attacks can lead to security problems in popular applications such as self-driving cars, face recognition, etc. Hence, building networks which are robust to such attacks is highly desirable and essential. Among the various methods present in literature, defensive distillation has shown promise in recent years. Using knowledge distillation, researchers have been able to create models robust against some of those attacks. However, more attacks have been developed exposing weakness in defensive distillation. In this project, we derive inspiration from teacher assistant knowledge distillation and propose that introducing an assistant network can improve the robustness of the distilled model. Through a series of experiments, we evaluate the distilled models for different distillation temperatures in terms of accuracy, sensitivity, and robustness. Our experiments demonstrate that the proposed hypothesis can improve robustness in most cases. Additionally, we show that multi-step distillation can further improve robustness with very little impact on model accuracy.
[ "cs.CV", "cs.CR", "cs.LG" ]
false
2305.08228
2023-05-14T19:21:43Z
Skeleton Graph-based Ultrasound-CT Non-rigid Registration
[ "Zhongliang Jiang", "Xuesong Li", "Chenyu Zhang", "Yuan Bi", "Walter Stechele", "Nassir Navab" ]
Autonomous ultrasound (US) scanning has attracted increased attention, and it has been seen as a potential solution to overcome the limitations of conventional US examinations, such as inter-operator variations. However, it is still challenging to autonomously and accurately transfer a planned scan trajectory on a generic atlas to the current setup for different patients, particularly for thorax applications with limited acoustic windows. To address this challenge, we proposed a skeleton graph-based non-rigid registration to adapt patient-specific properties using subcutaneous bone surface features rather than the skin surface. To this end, the self-organization mapping is successively used twice to unify the input point cloud and extract the key points, respectively. Afterward, the minimal spanning tree is employed to generate a tree graph to connect all extracted key points. To appropriately characterize the rib cartilage outline to match the source and target point cloud, the path extracted from the tree graph is optimized by maximally maintaining continuity throughout each rib. To validate the proposed approach, we manually extract the US cartilage point cloud from one volunteer and seven CT cartilage point clouds from different patients. The results demonstrate that the proposed graph-based registration is more effective and robust in adapting to the inter-patient variations than the ICP (distance error mean/SD: 5.0/1.9 mm vs 8.6/6.7 mm on seven CTs).
[ "eess.IV", "cs.CV", "cs.RO" ]
false
2305.08152
2023-05-14T13:09:27Z
STORYWARS: A Dataset and Instruction Tuning Baselines for Collaborative Story Understanding and Generation
[ "Yulun Du", "Lydia Chilton" ]
Collaborative stories, which are texts created through the collaborative efforts of multiple authors with different writing styles and intentions, pose unique challenges for NLP models. Understanding and generating such stories remains an underexplored area due to the lack of open-domain corpora. To address this, we introduce STORYWARS, a new dataset of over 40,000 collaborative stories written by 9,400 different authors from an online platform. We design 12 task types, comprising 7 understanding and 5 generation task types, on STORYWARS, deriving 101 diverse story-related tasks in total as a multi-task benchmark covering all fully-supervised, few-shot, and zero-shot scenarios. Furthermore, we present our instruction-tuned model, INSTRUCTSTORY, for the story tasks showing that instruction tuning, in addition to achieving superior results in zero-shot and few-shot scenarios, can also obtain the best performance on the fully-supervised tasks in STORYWARS, establishing strong multi-task benchmark performances on STORYWARS.
[ "cs.CL" ]
false